首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
一般工业技术   44篇
  2015年   1篇
  2014年   1篇
  2009年   3篇
  2008年   14篇
  2007年   11篇
  2006年   6篇
  2005年   8篇
排序方式: 共有44条查询结果,搜索用时 0 毫秒
1.
Thermal conductivity models of frozen soils were analyzed and compared with similar models developed for frozen foods. In total, eight thermal conductivity models and 54 model versions were tested against experimental data of 13 meat products in the temperature range from 0 to −40 °C. The model by deVries, with water+ice (wi) as the continuous phase, showed overall the best predictions. The use of wi leads generally to improved predictions in comparison to ice; water as the continuous phase is beneficial only to deVries model, mostly from −1 to −20 °C; fat is advantageous only to meats with high fat content. The results of this work suggest that the more sophisticated way of estimating the thermal conductivity for a disperse phase in the deVries model might be more appropriate than the use of basic multi-phase models (geometric mean, parallel, and series). Overall, relatively small differences in predictions were observed between the best model versions by deVries, Levy, Mascheroni, Maxwell or Gori as applied to frozen meats with low content of fat. These differences could also be generated by uncertainty in meat composition, temperature dependence of thermal conductivity of ice, measurement errors, and limitation of predictive models.  相似文献   
2.
Although ammonia/water has been used for decades as a working pair in absorption cycles for industrial refrigeration, very limited data are available on boiling heat transfer of this mixture. The intention of this work is to carry out a bibliographic revision of the information available in the open literature about nucleate pool boiling of the ammonia/water mixture and its pure components. The experimental data have been compared with existing prediction correlations for the pure components and also for their mixtures.For water, all the pure component pool boiling correlations gave similar predictions and were in good agreement with experimental data. For ammonia the prediction of the correlation and the experimental data showed more differences.At a given heat flux, the experimental data show that the mixture pool boiling heat transfer coefficient is lower than that obtained with pure components. Three of the well-known correlations for mixtures were compared against the experimental data. None of these correlations provided a good prediction of the mixture pool boiling heat transfer coefficient over a wide range of mass fraction. Furthermore, a new correlation has been proposed.  相似文献   
3.
Comparison of R-290 and two HFC blends for walk-in refrigeration systems   总被引:4,自引:3,他引:1  
To help provide a clear understanding of the relative performance potential of HFCs (R-404A and R-410A) as compared to R-290 for walk-in refrigeration systems representing direct expansion commercial refrigeration systems with small charge, an experimental evaluation of the three refrigerants was investigated. To compare the environmental impact of refrigerants over the entire life cycle of fluid and equipment, including power consumption, the life cycle climate performance (LCCP) of the three refrigerants were evaluated based on measured data. The estimated LCCPs at various emission rates indicate that the LCCP of R-290 is always lower than that of R-404A. The LCCP of R-410A is lower than that of R-290 as long as the annual emission is kept below 10%. It was concluded that R-410A has less or equivalent environmental impact as compared to R-290 when safety (toxicity and flammability), environmental impact (climate change), cost and performance (capacity and COP) are considered.  相似文献   
4.
A new way to assess the performance of refrigeration system models is presented in this paper, based on the estimation of cycle parameters, such as the evaporation temperature which will determine the validity of the method. This paper is the first of a series which will also study the influence of the heat transfer coefficient models on the estimation of the refrigeration cycle parameters. It focuses on fin and tube evaporators and includes the dehumidification process of humid air. The flow through the heat exchanger is considered to be steady and the refrigerant flow inside the tubes is considered one-dimensional. The evaporator model is discretised in cells where 1D mass, momentum and energy conservation equations are solved by using an iterative procedure called SEWTLE. This procedure is based on decoupling the calculation of the fluid flows from each other assuming that the tube temperature field is known at each fluid iteration. Special attention is paid to the correlations utilised for the evaluation of heat transfer coefficients as well as the friction factor on the air and on the refrigerant side. A comparison between calculated values and measured results is made on the basis of the evaporation temperature. The experimental results used in this work correspond to an air-to-water heat pump and have been obtained by using R-22 and R-290 as refrigerants.  相似文献   
5.
This paper studies refrigeration cycles in which plate heat exchangers are used as either evaporators or condensers. The performance of the cycle is studied by means of a method introduced in previous papers which consists of assessing the goodness of a calculation method by looking at representative variables such as the evaporation or the condensation temperature depending on the case evaluated. This procedure is also used to compare several heat transfer coefficients in the refrigerant side. As in previous works the models of all the cycle components are considered together with the heat exchanger models in such a way that the system of equations they provide is solved by means of a Newton–Raphson algorithm. Calculated and measured values of the evaporation and the condensation temperatures are also compared. The experimental results correspond to the same air-to-water heat pump studied in other papers and they have been obtained by using refrigerants R-22 and R-290.  相似文献   
6.
Comparison of CFD analysis to empirical data in a commercial vortex tube   总被引:3,自引:0,他引:3  
This paper presents a comparison between the performance predicted by a computational fluid dynamic (CFD) model and experimental measurements taken using a commercially available vortex tube. Specifically, the measured exit temperatures into and out of the vortex tube are compared with the CFD model. The data and the model are both verified using global mass and energy balances. The CFD model is a two-dimensional (2D) steady axisymmetric model (with swirl) that utilizes both the standard and renormalization group (RNG) k-epsilon turbulence models. While CFD has been used previously to understand the fluid behavior internal to the vortex tube, it has not been applied as a predictive model of the vortex tube in order to develop a design tool that can be used with confidence over a range of operating conditions and geometries. The objective of this paper is the demonstration of the successful use of CFD in this regard, thereby providing a powerful tool that can be used to optimize vortex tube design as well as assess its utility in the context of new applications.  相似文献   
7.
This paper is the second paper out of two which present the development of a dynamic model for single-effect LiBr/water absorption chillers. The first part describes the model in detail with respect to the heat and mass balances as well as the dynamic terms. This second part presents a more detailed investigation of the model performance, including performance analysis, sensitivity checks and a comparison to experimental data. General model functionality is demonstrated.A sensitivity analysis gives results which agree very well to fundamental expectations: it shows that an increase in both external and internal thermal mass results in a slower response to the step change but also in smaller heat flow oscillations during the transient period. Also, the thermal mass has been found to influence the heat flow transients more significantly if allocated internally. The time shift in the solution cycle has been found to influence both the time to reach steady-state and the transients and oscillations of the heat flow. A smaller time shift leads to significantly faster response.A comparison with experimental data shows that the dynamic agreement between experiment and simulation is very good with dynamic temperature deviations between 10 and 25 s. The total time to achieve a new steady-state in hot water temperature after a 10 K input temperature step amounts to approximately 15 min. Compared to this, the present dynamic deviations are in the magnitude of approximately 1–3%.  相似文献   
8.
The effect of different type of condensers on the performance of R410A residential air-conditioning systems was investigated in this study. Two R410A residential air-conditioning systems, one with a microchannel condenser and the other with a round-tube condenser, were examined experimentally, while the other components of the two systems were identical except the condensers. Two condensers had almost same package volumes. The two systems were operated in separate environmental chambers and their performance was measured in ARI A, B, and C conditions. Both the COP and cooling capacity of the system with the microchannel condenser were higher than those for the round-tube condenser in all test conditions. The refrigerant charge amount and the refrigerant pressure drop were measured; the results showed a reduction of charge and pressure drop in the microchannel condenser. A numerical model for the microchannel condenser was developed and its results were compared with the experiments. The model simulated the condenser with consideration given to the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. The results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser experimentally examined in this study. Temperature contours, generated from the measured air exit temperatures, showed the refrigerant distribution in the microchannel condenser indirectly. The temperature contours developed from the model results showed a relatively good agreement with the contours for measured air exit temperatures of the microchannel condenser.  相似文献   
9.
This paper presents the results of a numerical investigation on the performance of ejector cycles in which the work recovered is used to recirculate liquid through the evaporator. The ejector recirculation cycle, in which the ejector is only used to recirculate liquid and improve evaporator performance, and the standard ejector cycle, in which the ejector can be used to both recirculate liquid and directly unload the compressor, are investigated. The analysis uses a microchannel evaporator and refrigerants R134a, R410A, and CO2. It is seen that fluids that have large throttling loss but gain little benefit from liquid recirculation (CO2) should use the ejector to directly unload the compressor, while fluids that have lower throttling loss but gain significant benefit from liquid recirculation (R134a) should use the ejector to improve evaporator performance through liquid recirculation. It is also seen that the ejector recirculation cycle is better suited for ejector off-design operation.  相似文献   
10.
Attention is drawn, to the fact that, while four different correlations for condensation in microchannels are in fair agreement for the case of R134a (on which the empirical constants in the correlations are predominately based) they differ markedly when applied to other fluids such as ammonia. A wholly theoretical model is compared with the correlations for both R134a and ammonia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号