首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   1篇
  国内免费   2篇
综合类   2篇
化学工业   135篇
金属工艺   21篇
机械仪表   7篇
建筑科学   1篇
矿业工程   19篇
能源动力   114篇
石油天然气   3篇
武器工业   55篇
无线电   2篇
一般工业技术   82篇
冶金工业   5篇
自动化技术   6篇
  2023年   8篇
  2022年   39篇
  2021年   9篇
  2020年   8篇
  2019年   15篇
  2018年   10篇
  2017年   19篇
  2016年   13篇
  2015年   9篇
  2014年   25篇
  2013年   24篇
  2012年   22篇
  2011年   36篇
  2010年   14篇
  2009年   21篇
  2008年   18篇
  2007年   28篇
  2006年   20篇
  2005年   18篇
  2004年   15篇
  2003年   21篇
  2002年   7篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有452条查询结果,搜索用时 31 毫秒
1.
The DCRFoam solver (density-based compressible solver) built on the OpenFOAM platform is used to simulate the reflection and diffraction processes that occur when detonation waves collide with various objects. Static stoichiometric hydrogen–oxygen mixtures diluted with 70% Ar are used to form stable detonation waves with large cells, with initial conditions of 6.67 kPa pressure and 298 K temperature. The diameters of the cylindrical obstacle range from 6 mm to 22 mm, with x = 230 mm, x = 244 mm, and x = 257 mm being the chosen position. Cylindrical, square, triangular, and inverted triangular obstacles are used, and the quenched detonation re-initiation processes behind them are investigated. In the detonation diffraction process, four triple points exist at the same time due to the effect of cylindrical obstacles of smaller diameters. The re-initiation distance of the detonation wave increases with the increase of cylindrical obstacle diameter. Both the Mach reflection angle and the decoupled angle decrease as the diameter increases. When the location of the cylindrical obstacles is changed, the detonation wave dashes into the obstacles with its different front structures, it is easier to realize the detonation re-initiation when the weak incident shock at the front of a detonation wave strikes the obstacles, and the re-initiation distance decreases by 17.1% when compared with the longest re-initiation distance. The detonation re-initiation distance is shortest under the action of cylindrical obstacles, however the quenched detonation cannot be re-initiated when the inverted triangle and square obstacles are used. The suppression effects of inverted triangle and square obstacles on detonation waves are more evident.  相似文献   
2.
X-ray absorption spectroscopy has been used for comparative study of electronic structure of detonation nanodiamonds (ND) purified using different oxidative treatments. The treatment of detonation soot with a mixture of nitric and sulphuric acids followed by ion exchange and ultrafiltration of hydrosol obtained was found to result in developing of ND surface coverage consisting of oxidized carbon species, which electronic state is close to that of strongly oxidized graphite. The deeper purification of ND was demonstrated to allow cleaning of ND particles from most of the oxidized carbon contaminations.  相似文献   
3.
A preliminary experimental and theorotical investigation of the feasibility of detonation-induced pulverized coal gasification is described. The concept envisions a closed annular detonation duct through which a hydrogen/oxygen gasphase detonation propagates continuously. Coal particles injected into the violent and rapidly changing atmosphere produced by the detonation would undergo gasification reactions and be subsequently expelled from the duct. These events would occur in a time period compatible with one revolution of the detonation. A one-dimensional analysis of the response of a single coal particle within the expansion-wave region behind the detonation front is presented. Independent variables include particle diameter, initial H2/O2 stoichiometry and expansion wavelength (at the time the particle is overtaken by the detonation front). The most significant result of this analysis is the prediction of relative gas/particle velocities ranging between 125 and 1500m/s, which are sustained throughout particle residence times of 1–15 ms corresponding to 10–1000 μm diameter particles. An experimental facility comprising a 47 m ‘single-shot’ detonation duct that was built for this study is discussed. The duct was 2.54 cm square and was terminated at each end by a 0.36 m diameter × 2.44 m long cylindrical tank which contained helium gas during a test. Sized coal particles were placed at a point within the first 3.7 m length of the duct, and thin brass diaphragms initially separated the duct from the two helium-filled tanks. Detonation was initiated at the duct, end closest to these particles. The diaphragm at that end burst, allowing combustion and gasification products to exhaust into the adjoining tank where they were quenched and decelerated. When the detonation reached the far end of the duct the second diaphragm burst, minimizing wave reflections which would otherwise return to the ‘test section’ end and interfere with the flow field there. After a test the contents of both tanks and the duct were circulated and mixed. A gas sample was then drawn and analysed for yield. Results from preliminary experiments using this facility are presented. Although too few tests were conducted for conclusive observations to be reported, in two experiments yields of CO + CH4 representing 40 per cent of the total initial carbon content in the coal samples were obtained.  相似文献   
4.
介绍了具有高煤轰感度和耐热特性的聚奥99炸药的配方、制备工艺、性能以及装入传爆管后产品的性能和应用状况。  相似文献   
5.
阐述采用非电导爆管组装成全封闭系统,以实现网路导通检查,并有效控制瓦斯引爆。  相似文献   
6.
采用爆炸法合成了纳米碳集聚体和纳米金刚石,将其低填充聚丙烯(PP)制备了复合材料,研究了复合材料的结晶行为和力学性能。结果表明:填充纳米粒子提高了PP的α晶态的结晶度,添加0.06%纳米碳集聚体或纳米金刚石的PP的结晶度分别提高了16.74%和25.83%;PP复合材料的拉伸强度随纳米粒子用量的增加而提高,但冲击强度下降。  相似文献   
7.
A second-order accurate scheme for the Cartesian cut-cell method developed previously by the authors [Ji H, Lien F-S, Yee E. Comput. Methods Appl. Mech. Eng. 198 (2008), 432] is generalized for application to both two- and three-dimensional inviscid compressible flow problems. A cell-merging approach is used to address the so-called “small cell” problem that has plagued Cartesian cut-cell methods. In the present cell-merging approach, the conservative variables are stored at the cut-cell centroid (including the non-merged and merged cut-cells) rather than at the Cartesian cell center. Although this approach results in a more complicated search algorithm for the determination of the neighbor cells (required for the computation of the spatial gradients of the conservative variables), this approach enables the straightforward formulation of a higher than first-order accurate discretization scheme in the vicinity of the (complex and irregular) internal boundaries of the flow domain. Six test cases (including detonation problems) are used to demonstrate the accuracy and capability of the adaptive cut-cell method, for which both mesh refinement and derefinement techniques are employed in the case of an unsteady shock diffraction problem.  相似文献   
8.
In the present work, the solver rhoCentralRfFoam, developed using the finite volume framework provided by OpenFOAM®, is employed to perform numerical simulations of two-dimensional detonations. This solver uses the central scheme of Kurganov, Noelle, and Petrova for dealing with convective terms. Also, the detailed kinetic model for hydrogen oxidation of Marinov, Westbrook, and Pitz was used for properly defining chemically induced source terms, and the semi-implicit Bulirsh Stöer (SIBS) method was employed for solving the stiff ODE system required to compute the species' rates. The present study intends to investigate the solver's capability for computing cellular structures, which develop when non-planar detonations are propagating in confined mixtures. Interactions between waves, resulting from several ignition points, are used as perturbation sources for the onset of cellular structures. Numerical simulations allowed us to identify a well-shaped cellular structure and other different structures that are not clearly defined, close to the ignition sources. However, after extending the computational domain, convergence towards a unique cellular pattern is attained. Such cellular pattern compares with most of the available data. Also, in order to improve the presentation of cellular structures and their dynamic behavior, a numerical schlieren technique is utilized for some flow variables (e.g. vorticity and density).  相似文献   
9.
An extended Zel'dovich–von Neumann–Döring (ZND) model has been proposed to address vibrational nonequilibrium mechanism. To expand the application of this extended ZND model in predicting flow characteristics under thermal nonequilibrium for hydrogen-related detonation simulations, a case of one-dimensional stoichiometric hydrogen-oxygen detonation with argon dilution is adopted for comparative study. A vibrational relaxation timescale is introduced in the extended ZND model together with simplified single-step and two-step chemical reaction models. In addition, a numerical simulation using the conservation element and solution element (CE/SE) algorithm and detailed chemistry with vibrational nonequilibrium coupling is conducted to serve as a benchmark for the model predictions. In this specific case study, predictions of half reaction length are in good agreement with simulations if the single-step Arrhenius model and the characteristic vibrational temperature of hydrogen are used. Compared with the detailed numerical simulations, the current extended ZND model and the simplified chemical models are demonstrated feasible and economical to predict the half reaction thickness under the vibrational nonequilibrium condition and can serve as one of the analytical tools in studying large-scale H2O2 detonation.  相似文献   
10.
As a carbon-free fuel and a hydrogen-energy carrier, ammonia is a potential candidate for future energy utilization. Therefore, in order to promote the application of ammonia in detonation engines and to evaluate the safety of ammonia related industrial process, DDT experiments for ammonia/oxygen mixtures with different ERs were carried out in a large-scale horizontal tube. Moreover, pressure transducers and self-developed temperature sensors were applied to record the overpressure and the instantaneous flame temperature during DDT process. The results show that the DDT process in ammonia/oxygen mixtures contains four stages: Slow propagation stage, Flame and pressure wave acceleration stage, Fast propagation and detonation wave formation stage, Detonation wave self-sustained propagation stage. For stoichiometric ammonia/oxygen mixtures, flame front and the leading shock wave propagate one after another with different velocity, until they closely coupled and propagated together with one steady velocity. At the same time, it is found that an interesting retonation wave propagates backward. The peak overpressure, detonation velocity, and flame temperature of the self-sustained detonation are 2 MPa, 2000 m/s and 3500 K, respectively. With the ER increased from 0.6 to 1.6, the detonation velocities and peak overpressures ranged from 2310 m/s to 2480 m/s and 25.6 bar–28.7 bar, respectively. In addition, the detonation parameters of ammonia were compared with those of methane and hydrogen to evaluate the detonation performance and destructiveness of ammonia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号