首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
化学工业   1篇
金属工艺   1篇
一般工业技术   2篇
  2021年   1篇
  2017年   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Equal‐channel angular rolling (ECAR) is a continuous severe plastic deformation process. In this process, severe shear strains apply to the sheet. This strain increases the yield or ultimate strength of sheet without significant change in sheet dimension. In this paper, the effect of ECAR process on mechanical properties and fatigue life of manufactured sheets will be studied. Four AA5083 samples have been prepared and annealed for obtaining stress‐free samples. Three samples have been rolled by the ECAR process with one, two and three passes of rolling, respectively. Mechanical tests including tensile test, hardness and axial fatigue tests have been carried out on prepared samples. Fatigue tests have been implemented according to a strain‐based approach with a constant strain ratio equal to 0.75 and 0.5 Hz frequency of loading. All of the tests have been carried out in controlled laboratory conditions. Results show that the ultimate tensile strength of samples increases with increasing the pass of rolling. Also, the maximum elongation of samples decreases. Maximum elongation was 17% in annealed samples, while it decreases to 10% in samples with three passes of rolling. The hardness of samples has been measured, and the results show an increase in hardness for a higher pass of the ECAR process. Fatigue test results show that fatigue life of AA5083 samples decreases in manufactured sheets of the ECAR process. Also, cyclic softening has been observed in the ECARed sample. The fracture surfaces of samples after fatigue test have been observed with a scanning electron microscope. A comparison of fracture surfaces confirms that the crack growth was intergranular in annealed samples while it changes in ECARed samples to transgranular.  相似文献   
2.
Nano grained AZ31 alloy achieved by equal channel angular rolling process   总被引:1,自引:0,他引:1  
Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.  相似文献   
3.
Accumulated deformation during a new ECAR process is analyzed. It is found that the effect of the normal strain component is not negligible. The minimum accumulated strain is measured as 0.408 in one-pass ECAR deformed 6063 aluminum alloy sheet. Submicron grain structure is obtained in a 6063 Al alloy sheet by 3-pass ECAR deformation and recrystallization at 250°C for 30 min. This article is based on a presentation made in the symposium “The 7th KIM-JIM Symposium & the 3rd International Symposium on nanostructured Materials Technology”, held at KINTEX, Ilsan, Korea, October 27–28, 2005 under auspices of the Korean Institute of Metals and Materials, The Japan Institute of Metals and Center for Nanostructured Materials Materials Technology.  相似文献   
4.
Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号