首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31019篇
  免费   2542篇
  国内免费   844篇
电工技术   5919篇
综合类   2054篇
化学工业   3146篇
金属工艺   1376篇
机械仪表   2443篇
建筑科学   1954篇
矿业工程   632篇
能源动力   6924篇
轻工业   957篇
水利工程   1407篇
石油天然气   1858篇
武器工业   165篇
无线电   574篇
一般工业技术   2242篇
冶金工业   992篇
原子能技术   563篇
自动化技术   1199篇
  2024年   116篇
  2023年   391篇
  2022年   746篇
  2021年   861篇
  2020年   861篇
  2019年   688篇
  2018年   610篇
  2017年   763篇
  2016年   917篇
  2015年   1047篇
  2014年   2154篇
  2013年   1776篇
  2012年   2299篇
  2011年   2508篇
  2010年   1744篇
  2009年   1762篇
  2008年   1585篇
  2007年   2046篇
  2006年   1939篇
  2005年   1530篇
  2004年   1324篇
  2003年   1207篇
  2002年   1000篇
  2001年   864篇
  2000年   781篇
  1999年   617篇
  1998年   431篇
  1997年   343篇
  1996年   313篇
  1995年   275篇
  1994年   212篇
  1993年   133篇
  1992年   124篇
  1991年   97篇
  1990年   84篇
  1989年   76篇
  1988年   57篇
  1987年   36篇
  1986年   12篇
  1985年   16篇
  1984年   10篇
  1983年   5篇
  1982年   9篇
  1981年   6篇
  1980年   10篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1961年   2篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
2.
Hydrogen is currently receiving significant attention as an alternative energy resource, and among the various methods for producing hydrogen, methanol steam reforming (MSR) has attracted great attention because of its economy and practicality. Because the MSR reaction is inherently activated over catalytic materials, studies have focused on the development of noble metal-based catalysts and the improvement of existing catalysts with respect to performance and stability. However, less attention has been paid to the modification and development of innovative MSR reactors to improve their performance and efficiency. Therefore, in this review paper, we summarize the trends in the development of MSR reactor systems, including microreactors and membrane reactors, as well as the various structured catalyst materials appropriate for application in complex reactors. In addition, other engineering approaches to achieve highly efficient MSR reactors for the production of hydrogen are discussed.  相似文献   
3.
《Ceramics International》2022,48(12):16923-16932
This paper offers a new way of testing the ablation property of material under an oxyacetylene torch using a thin-blade specimen, which costs much less time to reach the maximum temperature and provides a harsh turbulence fluid field that's closer to reality. The thin-blade specimen experiences a higher turbulent intensity than the traditional disk-like specimen, leading to more efficient heat exchange. The fluid field simulation agrees with the testing results. In addition, we manage to synthesize the C/Cx-SiCy composites with the co-deposition chemical vapor infiltration (CVI) method. The C/Cx-SiCy composites exhibit a similar anti-ablation property as C/C composites and consist of enough SiC phase simultaneously, combining the advantages of both C/C composites and C/SiC composites. The thin-blade C/Cx-SiCy composites show a lower linear ablation rate (1.6 μm/s) than C/C composites (4.1 μm/s) and C/SiC composites (19.6 μm/s) during the oxyacetylene test. The glass layer formed on the surface of C/Cx-SiCy could cling to the bulk material instead of peeling off due to the high PyC content in the matrix could protect the SiO2 from blowing away.  相似文献   
4.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   
5.
6.
菌型叶根动叶片是一种新型的动叶片,采用数控铣加工叶根内径向面时留0.1~0.2mm余量,然后在进行叶根内径向磨削,叶冠直接加工到位,没有后序磨削加工,由于叶根叶冠在加工过程中不是一次装夹完成的,根冠存在一定的落差,在后续的装配中容易产生配合间隙,无法达到要求。文中介绍了一种新的加工工艺,解决了这一问题。  相似文献   
7.
《Ceramics International》2022,48(24):36460-36468
Evaluation of the nonlinear relationship between the surface defect size and fracture strength of ceramics is important for engineering applications. In this study, we aim to predict the apparent nonlinear relationship between the defect size and fracture strength of single-edge notched beams (SENBs) using the finite element method. Specifically, we applied the methodology for predicting fracture strength from microstructure distribution data (relative density, pore size, aspect ratio, and grain size) to a finite element analysis (FEA) model in which the shape and size of the initial defects are defined at notch locations. By reproducing the apparent nonlinearity caused by the competition between the surface and internal defects within the framework of linear elastic fracture mechanics, the effectiveness of the FEA methodology for the evaluation of strength scatter and allowable crack size in ceramics was demonstrated.  相似文献   
8.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
9.
Hierarchical-Beta zeolites have been hydrothermally synthesized by adding a new gemini organic surfactant. The used gemini surfactant play the role of a “pore-forming agents” on the mesoscale, on the same time, providing alkaline environment for the system. With this hierarchical Beta zeolite as the core support, we successfully prepared a shell layer of Ni-containing (22 wt%) petal-like core-shell-like catalyst and applied it to bioethanol steam reforming. At the reaction temperature of 350 °C–550 °C, the conversion rate of ethanol and the selectivity of hydrogen were always above 85% and 70%. After reaction of 100 h on stream at 400 °C, there were not obvious inactivation could be observed on NiNPs/OH-MBeta catalyst.  相似文献   
10.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号