首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
能源动力   1篇
一般工业技术   3篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
In order to obtain catalyzers to decompose tri-methyl aluminium (TMA) to Al and CH3 at catalyzer temperatures lower than 500 °C, decomposition experiments using Ni-Chrome, Kanthal, Inconel 600, Chromel and SUS-304 catalyzers exhibiting resistance to oxidation have been carried out. The experiments have revealed that TMA can be decomposed to Al and CH3 above 200 °C using Chromel or SUS-304 catalyzer, and that the CH3 does not decompose further below 500 °C. The experiments have also revealed that it requires relatively small activation energy for decomposing TMA to Al and CH3 using Chromel or SUS-304 as the catalyzer.  相似文献   
2.
Growth of c-GaN films on GaAs(100) using hot-wire CVD   总被引:1,自引:0,他引:1  
Cubic gallium nitride (GaN) films were grown on nitrided layers of GaAs(100) by hot-wire chemical vapor deposition. The nitrided layer was also formed by NHx radicals generated on a tungsten hot-wire surface. Nitridation conditions for the growth of GaN with a cubic-type structure were investigated. As a result, GaN film with a preponderant cubic phase was grown on the GaAs surface layer nitrided at a substrate temperature of 550 °C, a filament temperature of 1200 °C and an ammonia (NH3) pressure of 1 Torr.  相似文献   
3.
The electrical, structural and optical properties of hydrogenated amorphous silicon (a-Si:H) films deposited from pure silane (SiH4) using hot wire chemical vapor deposition (HW-CVD) technique are systematically studied as a function of silane flow rate between 5 and 30 sccm. We found that the properties are greatly affected by the silane flow rate over the range we studied. The device quality a-Si:H films with a photosensitivity >105 were deposited by HW-CVD at a deposition rate >10 Å s−1 using low silane flow rate. However, a-Si:H films deposited at higher silane flow rate and/or higher deposition rates show degradation in their structural and electrical properties. The FTIR studies indicate that the hydrogen bonding in a-Si:H films shifts from mono-hydrogen (Si–H) to di-hydrogen (Si–H2) and (Si–H2)n complexes when films were deposited at higher silane flow rate. The hydrogen content in the a-Si:H films increases with increase in silane flow rate and was found to be less than 10 at.%. The Raman spectra show increase in disorder and the Rayleigh scattering with increase in silane flow rate. The optical band gap also shows an increasing trend with silane flow rate. Therefore, only the hydrogen content cannot be accounted for the increase in the optical band gap. We think that the increase in the optical band gap may be due to the increase in the voids. These voids reduce the effective density of material and increase the average Si–Si distance, which is responsible for the increase in the band gap. Silane flow rate of 5 sccm, appears to be an optimum flow rate for the growth of mono-hydrogen (Si–H) bonded species having low hydrogen content (4.25 at%) in a-Si:H films at high deposition rate (12.5 Å s−1), high photosensitivity (105) and small structural disorder.  相似文献   
4.
We investigated an influence of gas pressure on low-temperature preparation of nanocrystalline cubic silicon carbide (nc-3C-SiC) films by hot-wire chemical vapour deposition (HW-CVD) using SiH4/CH4/H2 system. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra revealed that the films prepared below 1.5 Torr were Si-nanocrystallite-embedded hydrogenated amorphous SiC. On the other hand, nc-3C-SiC films were successfully prepared at gas pressure above 2 Torr. The high gas pressure plays two important roles in low-temperature preparation of nc-3C-SiC films: (1) leading to sufficient decomposition of CH4 molecules through a gas phase reaction and an increase in the incorporation of carbon atoms into film and (2) promoting a creation of H radicals on the heated filament, allowing the sufficient coverage of growing film surface and a selective etching of amorphous network structure and/or crystalline-Si phase. It was found that total gas pressure is a key parameter for low-temperature preparation of nc-3C-SiC films.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号