首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28216篇
  免费   2097篇
  国内免费   1631篇
电工技术   376篇
技术理论   2篇
综合类   2490篇
化学工业   3361篇
金属工艺   1743篇
机械仪表   1699篇
建筑科学   6156篇
矿业工程   497篇
能源动力   610篇
轻工业   1175篇
水利工程   353篇
石油天然气   468篇
武器工业   141篇
无线电   4642篇
一般工业技术   4318篇
冶金工业   676篇
原子能技术   2485篇
自动化技术   752篇
  2024年   61篇
  2023年   245篇
  2022年   429篇
  2021年   597篇
  2020年   647篇
  2019年   579篇
  2018年   574篇
  2017年   730篇
  2016年   765篇
  2015年   797篇
  2014年   1388篇
  2013年   1719篇
  2012年   1808篇
  2011年   2289篇
  2010年   1698篇
  2009年   1849篇
  2008年   1684篇
  2007年   1957篇
  2006年   1782篇
  2005年   1468篇
  2004年   1255篇
  2003年   1125篇
  2002年   949篇
  2001年   835篇
  2000年   713篇
  1999年   627篇
  1998年   542篇
  1997年   486篇
  1996年   390篇
  1995年   369篇
  1994年   307篇
  1993年   236篇
  1992年   212篇
  1991年   177篇
  1990年   157篇
  1989年   121篇
  1988年   100篇
  1987年   62篇
  1986年   61篇
  1985年   42篇
  1984年   38篇
  1983年   14篇
  1982年   19篇
  1981年   7篇
  1980年   12篇
  1979年   3篇
  1975年   1篇
  1959年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
《Ceramics International》2022,48(12):16808-16812
Flash sintering has been reported in various ceramics. Nevertheless, anion and cation conductors exhibit different flash-sintering behaviors, and the interaction mechanism between the conductive species and the sintering environment has remained unclear. Herein, we report the flash-sintering phenomena of a typical cation conductor, Na3Zr2(SiO4)2(PO4) with anode region surrounded by air and NaNO3 environments. The results prove that the ionic behavior and joule heating distribution can be controlled by changing the electrode environment. Four possible scenarios describing the ion migration behavior and interaction with the environment are proposed for providing a guidance for controlling the ion interaction behavior during flash sintering.  相似文献   
3.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
4.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
5.
In this work, the grain boundaries composition of the polycrystalline CaCu3Ti4O12 (CCTO) was investigated. A Focused Ion Beam (FIB)/lift-out technique was used to prepare site-specific thin samples of the grain boundaries interface of CCTO ceramics. Scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectrometry (EDXS) and Electron Energy Loss Spectroscopy (EELS) systems were used to characterize the composition and nanostructure of the grain and grain boundaries region. It is known that during conventional sintering, discontinuous grain growth occurs and a Cu-rich phase appears at grain boundaries. This Cu-rich phase may affect the final dielectric properties of CCTO but its structure and chemical composition remained unknown. For the first time, this high-resolution FIB-TEM-STEM study of CCTO interfacial region highlights the composition of the phases segregated at grain boundaries namely CuO, Cu2O and the metastable phase Cu3TiO4.  相似文献   
6.
《Ceramics International》2015,41(7):8614-8622
SnO2–ZnO nanocomposite thin films, prepared by a simple carbothermal reduction based vapor deposition method, were irradiated with 8 MeV Si3+ ions for engineering the morphological and optical properties. The surface morphology of the nanocomposites was studied by atomic force microscopy (AFM), while the optical properties were investigated by photoluminescence spectroscopy (PL) and Raman spectroscopy. AFM studies on the irradiated samples revealed growth of nanoparticles at lower fluence and a significant change in surface morphology leading to the formation of nanosheets and their aggregates at higher fluences. A tentative mechanism underlying the observed ion induced evolution of surface morphology of SnO2–ZnO nanocomposite is proposed. PL studies revealed strong enhancement in the UV emissions from the nanocomposite thin film at lower fluence, while a drastic decrease in the UV emissions along with a significant enhancement in the defect emissions has been observed at higher fluences.  相似文献   
7.
The aim of this article is to synthesis tungsten oxide (WO3) nanoparticle along with Manganese (3 wt% and 10 wt%) by Microwave irradiation method. The physical properties of the synthesized Manganese doped Tungsten oxide materials were characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscope (TEM), UV-Diffuse Reflectance Spectroscopy, SEM-EDAX and Photoluminescence studies. The predominant peaks obtained in X-ray diffraction pattern reveal the crystalline nature of the nanoparticles and the structure belongs to Monoclinic for pure and Mn doped WO3. FTIR analysis shows the presence of Tungsten and oxygen in the synthesis material and verified with EDAX. TEM analysis shows both pristine and Mn doped WO3 nanopaticles. They are having spherical shaped morphology with average particle size from 35 to 40 nm. UV-DRS revealed that the bandgap energy for pure and Manganese doped WO3 are discussed in this article. The Scanning Electron Microscope analysis shows the plate like morphology for pure WO3 and the morphology were decreased by doping Manganese. The defects and oxygen deficiencies were analysed by photoluminescence spectroscopy.  相似文献   
8.
提供了一种简便易行的靶面激光光斑尺寸原位测量的方法。从高斯光束的横向光强分布特性出发,建立了激光烧蚀斑半径与辐照激光能量、光斑尺寸、烧蚀阈值间的关系式,模拟分析发现辐照激光光斑尺寸对烧蚀斑半径随辐照能量变化曲线有较大影响。对于脉宽为2 ms,波长为1064 nm的激光,实验测量了不同能量激光辐照下相纸烧蚀斑半径,并用推导出的关系式拟合测量数据,获得了靶面处光斑尺寸和样品烧蚀阈值。同时,也测量了不同位置处的光斑尺寸和样品烧蚀阈值,对高斯光束束腰位置和样品烧蚀阈值的光斑尺寸效应进行了验证。研究结果表明该技术结果可靠,简单高效。该技术可以为高能激光与固体物质相互作用的基础研究和激光加工等应用领域中实现简单方便地测量靶面光斑尺寸提供帮助。  相似文献   
9.
Indium separation using ion exchange resins from acidic polymetallic and very diluted solutions are investigated. Since the selectivity of commercial ion exchange resins have proven to be too low for an effective separation from solutions with high content of other metals, Lewatit® TP 208 was impregnated with common extractants to enhance its properties. By resin impregnation with D2EHPA and Cyanex 272, not only the selective indium recovery was reached but also the resin capacity was increased approx. two times. The best loading and elution performance were shown by Cyanex 272-impregnated Lewatit® TP 208, increasing the indium purity in the eluate from 0.75 % to 85 %.  相似文献   
10.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号