首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   6篇
  国内免费   11篇
综合类   2篇
化学工业   58篇
金属工艺   12篇
建筑科学   2篇
能源动力   91篇
轻工业   2篇
无线电   11篇
一般工业技术   63篇
冶金工业   1篇
原子能技术   3篇
  2023年   28篇
  2022年   21篇
  2021年   32篇
  2020年   22篇
  2019年   22篇
  2018年   8篇
  2017年   15篇
  2016年   14篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   10篇
  2010年   10篇
  2009年   12篇
  2008年   9篇
  2007年   9篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1995年   1篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
1.
Micro-supercapacitors (MSCs) as high-power density energy storage units are designed to meet the booming development of flexible electronics, requiring simple and fast fabrication technology. Herein, a fast and direct solvent-free patterning method is reported to fabricate shape-tailorable and flexible MSCs by floating catalyst chemical vapor deposition (FCCVD). The nitrogen-doped single-walled carbon nanotubes (N-SWCNTs) are directly deposited on a patterned filter by FCCVD with designable patterns and facilely dry-transferred on versatile substrates. The obtained MSCs deliver an excellent areal capacitance of 3.6 mF cm−2 and volumetric capacitance of 98.6 F cm−3 at a scan rate of 5 mV s−1 along with excellent long-term cycle stability over 125 000 circles. Furthermore, the MSCs show good performance uniformity, which can be readily integrated via connection in parallel or series to deliver a stable high voltage (4 V with five serially connected devices) and large capacitance (5.1 mF with five parallel devices) at a scan rate of 100 mV s−1, enabling powering the light emitting displays. Therefore, this method blazes the trail of directly preparing flexible, shape-customizable, and high-performance MSCs.  相似文献   
2.
郭彬彬  文豪  康文彬  张楚虹 《材料导报》2017,31(Z1):292-296
以氧化石墨烯(GO)为原料,尿素为氮掺杂剂,采用固/气界面水热反应的方式,即在反应釜内将GO抽滤得到的氧化石墨烯纸(GOP)与尿素分解产生的氨蒸气相互作用,成功制备出自支撑氮掺杂石墨烯纸(NGP)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱(RS)、X射线光电子能谱(XPS)和电化学测试对样品进行形貌结构及电化学性能的表征。测试结果表明:水热条件下尿素能有效地实现氧化石墨烯纸的氮掺杂,氮掺杂量为7.89%;氮掺杂石墨烯纸在100mA/g和500mA/g的电流密度下,充放电循环100周之后,放电比容量可分别保持在288mAh/g和190mAh/g。采用改进的固/气界面水热反应法制备的氮掺杂石墨烯纸较未掺杂石墨烯纸可逆比容量提高了近2.5倍,具有良好的循环稳定性,可为制备高性能的柔性锂离子电池负极材料提供新方法。  相似文献   
3.
We studied the adsorption of SOx (x?=?2,3) molecules on the surface of pristine graphene (PG) and N-doped graphene (NDG) by density functional theory (DFT) calculations at the B3LYP/6-31G(d) level. We used Mulliken and NBO charge analysis to calculate the net charge transfer of adsorbed SOx on pristine and defected graphene systems. Our calculations reveal much higher adsorption energy and higher net charge transfer by using NDG instead of pristine graphene. Furthermore, the density of state (DOS) graphs point to major orbital hybridization between the SOx and NDG, while there is no evidence of hybridization by using pristine graphene. Based on our results, it is found that SO2 and SO3 molecules can be adsorbed on the surface of NDG physically and chemically with adsorption energies (Eads) of ?27.5 and 65.2?kJ?mol?1 (19.6 and 51.4?kJ?mol?1 BSSE), respectively, while low adsorption energies were calculated in the case of using pristine graphene. So we introduced NDG as a sensitive adsorbent/sensor for detection of SO2 and SO3.  相似文献   
4.
Bifunctional catalysts are vital for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in metal-air batteries. In this work, Co–Co3O4/N-doped carbon nanosheets (NCNs) were developed as highly efficient bifunctional oxygen catalysts via the pyrolysis of a hybrid ZIF-67/CNs precursor. It is found that the introduced CNs play important roles. On one hand, the introduced CNs can tune the surface contents of Co, N and/or O species that are closely correlated with OER and ORR activity. On the other hand, they also facilitate to achieve high specific surface areas for the catalysts. In addition, the introduced CNs helps the formed Co–Co3O4 hybrid nanoparticles with uniform and small sizes to be well-distributed on the NCNs substrates. Despite such important roles, it should be noted that a moderate content of the introduced CNs is required to achieve optimal oxygen catalytic activity. As a result, the optimized ZIF-67/CNs(1)-600 exhibits a low value of η10 (~350 mV) for OER and a high value of E1/2 (~0.85 V) for ORR. Its overall bifunctional activity (ΔE) is as low as ~0.73 V, which is comparable to the recent reported Co-based catalysts.  相似文献   
5.
In this paper, dopamine hydrochloride (DPH) is introduced to synthesize ZIF-8@ZIF-67@DPH in the preparation of ZIF-8@ZIF-67. ZnSe/CoSe/NCDPH (N-doped carbon) composites are calcined in a high-temperature inert atmosphere with ZIF-8@ZIF-67@DPH as the precursor, selenium powder as the selenium source. ZnSe/CoSe/NCDPH has high discharge specific capacity, good cycle stability and outstanding rate performance. The first discharge capacity of ZnSe/CoSe/NCDPH is 1616.6 mAh g−1 at the current density of 0.1 A g−1, and the reversible capacity remains at 1214.2 mAh g−1 after 100 cycles, the reversible capacity is 416.7 mAh g−1 after 1000 cycles at 1 A g−1. Therefore, ZnSe/CoSe/NCDPH composites provide a new step for the research and synthesis of new stable, high-capacity, and safe high-performance lithium ion batteries. The bimetallic selenide composites not only have bimetallic active sites, but also can form synergistic effect between different metal phases, which can effectively reduce the capacity attenuation caused by volume expansion and reactive stress enrichment during lithium storage of metal oxide anode materials. Meanwhile, N-doped carbon can improve the conductivity and provide more active sites to store lithium, thus improving its lithium storage capacity.  相似文献   
6.
《Ceramics International》2016,42(13):14716-14720
We investigated the effect of adding nickel(II) sulfide (NiS) on nitridation of alumina (Al2O3) to aluminum nitride (AlN) using polymeric carbon nitride (PCN), which was synthesized by polymerization of dicyandiamide at 500 °C. The product powders obtained from nitridation of a mixture of δ-Al2O3 and NiS powders (mole ratio of 1:0.01) at various reaction temperatures were characterized by powder X-ray diffraction, 27Al magic-angle spinning nuclear magnetic resonance, and Raman spectroscopy. δ-Al2O3 began to convert to AlN at 900 °C and completely converted to AlN at 1300 °C. The as-synthesized sample powders contained nitrogen-doped carbon microtubes (N-doped CMTs) with a length of several tens of mm and thickness of ca. 3 µm. The addition of NiS to δ-Al2O3 resulted in the enhancement of the amount of N-doped CMTs and nitridation rate, which might be due to the catalytic action of Ni particles on the thermal decomposition of vaporized PCN. The change in Raman spectra with reaction temperatures indicated that the crystallinity of N-doped CMTs was increased by calcining at higher reaction temperatures.  相似文献   
7.
A novel three-dimensional (3D) hybrid consisting of molybdenum disulfide nanosheets (MoS2) uniformly bound at N-doped macro-mesoporous carbon (N-MMC) surface was fabricated by the solvothermal method. The resulting MoS2/N-MMC hybrid possesses few-layer MoS2 nanosheets structure with abundant edges of MoS2 exposed as active sites for hydrogen evolution reaction (HER), in sharp contrast to large aggregated MoS2 nanoflowers without N-MMC. The high electric conductivity of N-MMC and an abundance of exposed edges on the MoS2 nanosheets make the hybrid excellent electrocatalytic performance with a low onset potential of 98 mV, a small Tafel slope of 52 mV/decade, and a current density of 10 mA cm?2 at the overpotential of 150 mV. Moreover, the MoS2/N-MMC hybrid exhibits outstanding electrochemical stability and structural integrity owing to the strong bonding between MoS2 nanosheets and N-MMC.  相似文献   
8.
The low cost and highly efficient construction of electrocatalysts has attracted significant attention owing to the use of clean and sustainable energy technologies. In this work, cobalt nanoparticle decorated N-doped carbons (Co@NC) are synthesized by the pyrolysis of a cobalt covalent organic framework under an inert atmosphere. The Co@NC demonstrates improved electrocatalytic capabilities compared to N-doped carbon without the addition of Co nanoparticles, indicating the important role of cobalt. The well-dispersed active sites (Co–Nx) and the synergistic effect between the carbon matrix and Co nanoparticles greatly enhance the electrocatalytic activity for the oxygen reduction reaction. In addition, the Co content has a significant effect on the catalytic activity. The resulting Co@NC-0.86 exhibits a superb electrocatalytic activity for the oxygen reduction reaction in an alkaline electrolyte in terms of the onset potential (0.90 V), half-wave potential (0.80 V) and the limiting current density (4.84 mA·cm–2), and a high selectivity, as well as a strong methanol tolerance and superior durability, these results are comparable to those of the Pt/C catalyst. Furthermore, the superior bifunctional activity of Co@NC-0.86 was also confirmed in a home-built Zn-air battery, signifying the possibility for application in electrode materials and in current energy conversion and storage devices.  相似文献   
9.
A simple methodology to produce tubular nitrogen-doped carbon nanotube/polythiophene covalently linked composites is described. Nitrogen doped carbon nanotubes (N-CNTs) were made by the floating catalyst CVD method using toluene, ferrocene and tetramethylethylenediamine (TMEDA) as reagents. Functionalization of the N-CNTs was achieved using 3-thiophenecarboxaldehyde and N-methylglycine in 1,2-dichlorobenzene (Prato reaction). Elemental analysis showed nitrogen incorporation of N into the N-CNTs (1.8%) and also the N-methylglycine functionalized N-CNTs (f-N-CNTs; 6.2%). A series of f-N-CNT/thiophene monomer mixtures (weight ratios 1:3, 1:10 and 1:20) were used to make f-N-CNT/polythiophene tubular composites. As the amount of thiophene monomer was increased, the overall diameter of the polymer layer attached onto the N-CNTs increased. Polymer thickness also varied with reaction time (1 h, 12 h and 24 h). The combination of acid functionalization and N–doping gives the best coverage of the CNTs by polythiophene, in which the polythiophene preferentially binds to the f-N-CNTs to give tubular structures.  相似文献   
10.
The development of high-performance and stable trifunctional electrocatalysts is a pressing challenge for the practical application of water splitting and regenerative Zn-air batteries. Herein, bamboo-like N-doped carbon tubes encapsulated Co2P–Fe2P nanoparticles (CoFe-PN/C) was fabricated via a facile template-sacrificial approach by using CoZn-ZIF trapping Fe3+ (CoFeZn/C) as the precursor. The incorporation of Fe3+ was achieved by the one-pot synthesis approach during crystallization of ZIF, which led to the generation of the unique bamboo-like tube structure under the condition of simultaneous phosphating and carbonization. Benefiting from the large surface area, the optimized electronic structure of active sites and the unique bamboo-like nanotube, the resultant CoFe-PN/C can be used as the trifunctional electrocatalyst possessing a small overpotential at 10 mA cm−2 for the HER (178 mV) and OER (300 mV), as well as a high half-wave potential of 0.884 V for ORR (40 mV more positive than that of commercial 20 wt% Pt/C). Moreover, the self-designed CoFe-PN/C||CoFe-PN/C alkaline electrolyzer driving 50 mA cm−2 only need operating potential of 1.84 V and the maximum discharge power density of the CoFe-PN/C-assembled ZABs could achieve 152.0 mW cm−2, superior to those of Pt/RuO2 couple. This work will facilitate the development and application of trifunctional electrocatalysts based on bi-transition metallic phosphides for energy conversion and storage technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号