首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18392篇
  免费   1635篇
  国内免费   2155篇
电工技术   1041篇
技术理论   2篇
综合类   1002篇
化学工业   921篇
金属工艺   861篇
机械仪表   795篇
建筑科学   393篇
矿业工程   232篇
能源动力   219篇
轻工业   103篇
水利工程   108篇
石油天然气   141篇
武器工业   104篇
无线电   3197篇
一般工业技术   994篇
冶金工业   766篇
原子能技术   70篇
自动化技术   11233篇
  2024年   34篇
  2023年   240篇
  2022年   493篇
  2021年   669篇
  2020年   608篇
  2019年   429篇
  2018年   420篇
  2017年   419篇
  2016年   448篇
  2015年   562篇
  2014年   1024篇
  2013年   1011篇
  2012年   1259篇
  2011年   1749篇
  2010年   1144篇
  2009年   1072篇
  2008年   1190篇
  2007年   1415篇
  2006年   1379篇
  2005年   1231篇
  2004年   1003篇
  2003年   938篇
  2002年   785篇
  2001年   554篇
  2000年   486篇
  1999年   428篇
  1998年   301篇
  1997年   221篇
  1996年   149篇
  1995年   108篇
  1994年   92篇
  1993年   77篇
  1992年   52篇
  1991年   34篇
  1990年   35篇
  1989年   27篇
  1988年   24篇
  1987年   11篇
  1986年   15篇
  1985年   5篇
  1984年   17篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 806 毫秒
1.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
2.
Accurate and timely network traffic measurement is essential for network status monitoring, network fault analysis, network intrusion detection, and network security management. With the rapid development of the network, massive network traffic brings severe challenges to network traffic measurement. However, existing measurement methods suffer from many limitations for effectively recording and accurately analyzing big-volume traffic. Recently, sketches, a family of probabilistic data structures that employ hashing technology for summarizing traffic data, have been widely used to solve these problems. However, current literature still lacks a thorough review on sketch-based traffic measurement methods to offer a comprehensive insight on how to apply sketches for fulfilling various traffic measurement tasks. In this paper, we provide a detailed and comprehensive review on the applications of sketches in network traffic measurement. To this end, we classify the network traffic measurement tasks into four categories based on the target of traffic measurement, namely cardinality estimation, flow size estimation, change anomaly detection, and persistent spreader identification. First, we briefly introduce these four types of traffic measurement tasks and discuss the advantages of applying sketches. Then, we propose a series of requirements with regard to the applications of sketches in network traffic measurement. After that, we perform a fine-grained classification for each sketch-based measurement category according to the technologies applied on sketches. During the review, we evaluate the performance, advantages and disadvantages of current sketch-based traffic measurement methods based on the proposed requirements. Through the thorough review, we gain a number of valuable implications that can guide us to choose and design proper traffic measurement methods based on sketches. We also review a number of general sketches that are highly expected in modern network systems to simultaneously perform multiple traffic measurement tasks and discuss their performance based on the proposed requirements. Finally, through our serious review, we summarize a number of open issues and identify several promising research directions.  相似文献   
3.
Ferrites are an important group of magnetic materials which are used as absorbers. The incorporation of ferrite and conducting polymer achieves great enhancement in microwave absorption properties. The nanocomposites of hexagonal ferrites embedded by conducting polymers such as polypyrrole, polyaniline and polythiophene (PTH) have been paid much attention. In the present study, strontium hexagonal ferrite doped by Zr and Zn with the final formula of SrFe12-x(ZrZn)0.5xO19 considering x = 0.9 and embedded by PTH was produced to achieve a nanocomposite with the highest microwave absorbing ability. In this study, after synthesis of SrFe12O19(ZrZn)0.5xO19 and PTH, the nanocomposite was prepared by in situ polymerization. Wrapping the ferrite particles and PTH chains could form nanocomposite properly, and therefore acceptable interactions were observable between SrFe12-x(ZrZn)0.5xO19ferrite particles and PTH polymer chains in the composites. Assessing the X-ray diffraction (XRD) patterns of SrFe12-x(ZrZn)0.5xO19, PTH, and PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite indicated that the PTH characteristic peak shifts slightly and its peak intensity reduces, which may be attribute to the coating of PTH polymer chains onto SrFe12-x(ZrZn)0.5xO19 particles. We revealed also lower magnetic properties in the obtained nanocomposite. The morphological assessment also suggested that PTH could effectively coat the SrFe12-x(ZrZn)0.5xO19 particles. The synergistic effect of SrFe12-x(ZrZn)0.5xO19 particle plus PTH leads to microwave absorption percentage higher than 95% by PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite. Overall, nanocomposite creating by coupling interaction between SrFe12-x(ZrZn)0.5xO19 particles (x = 0.9) and PTH can effectively lead to achieve the highest rate of absorption of electromagnetic waves.  相似文献   
4.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
5.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
6.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
7.
Face aging (FA) for young faces refers to rendering the aging faces at target age for an individual, generally under 20s, which is an important topic of facial age analysis. Unlike traditional FA for adults, it is challenging to age children with one deep learning-based FA network, since there are deformations of facial shapes and variations of textural details. To alleviate the deficiency, a unified FA framework for young faces is proposed, which consists of two decoupled networks to apply aging image translation. It explicitly models transformations of geometry and appearance using two components: GD-GAN, which simulates the Geometric Deformation using Generative Adversarial Network; TV-GAN, which simulates the Textural Variations guided by the age-related saliency map. Extensive experiments demonstrate that our method has advantages over the state-of-the-art methods in terms of synthesizing visually plausible images for young faces, as well as preserving the personalized features.  相似文献   
8.
《工程爆破》2022,(4):78-84
介绍了在包头市某工程实施管道穿越黄河施工中,采用爆破法处理卡钻的经验。针对深水环境条件及钻杆内径小不宜采用集团装药的条件,确定采用"小直径爆破筒,钻杆内部装药"的爆破方案,阐述了爆破设计及施工注意事项。可供类似工程参考。  相似文献   
9.
《Ceramics International》2021,47(22):31886-31893
In this contribution, SnFe2O4 nanoparticles were prepared by the solvothermal method, the structural properties were performed using X-Ray Diffraction (DRX) to prove the success of tin ferrite formation and to determine de crystals parameters. The size and morphological study were build using Scanning Electron Microscopy (SEM) and Transmission Electron microscopy (TEM), the results showed that the size of particles is uniform with a range of particles (5–7 nm). The magnetic properties were carried out using the SQUID device, the SnFe2O4 nanoparticles have a magnetic transition at 750 K. In addition, the hysteresis loops at low temperature displayed Ms and Mr equals to 23 emu/g and 6 emu/g, respectively. The magnetoresistance properties were investigated, the SnFe2O4 nanoparticles present a large magnetoresistance effect (80%). The experimental results are supplemented by model calculations utilizing density functional theory and Monte-Carlo simulations.  相似文献   
10.
孙咸 《焊管》2022,45(5):22-35
综述了铁素体与铁素体异种金属焊缝(dissimilar metal welds,DMWs)接头界面组织及其影响。结果表明,在焊后热处理或运行温度下的铁素体钢DMWs接头的不均匀界面组织中,通常会形成脱碳层和增碳层。在铁素体钢DMWs焊接接头界面组织影响因素中,焊缝金属的化学成分有重要影响;焊后热处理规范(温度和时间)、工作温度下运行时间的影响较为突出;焊接工艺参数的影响亦不可忽略。异种钢接头界面处近缝区裂纹的产生,以及接头的蠕变强度随Larson Miller 参数增大而下降等不利影响,均为异种钢界面碳迁移行为所导致。焊缝成分控制法是接头界面组织控制或改善的必要条件,而脱碳层部位转移法能有效防止裂纹发生,亦是接头安全运行的重要工艺措施之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号