首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
一般工业技术   6篇
  2023年   2篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Powder metallurgical TiAl based alloy and Ti–6Al–4V (TC4) alloy were diffusion bonded at 915 °C for 1 h under a pressure of 80 MPa. Single Ti‐based amorphous or Ni‐based amorphous foil was utilized as an interlayer during diffusion bonding process. The tensile mechanical properties of the diffusion bonded joints between TiAl based alloy and TC4 alloy were tested. The fracture surface and microstructure characteristic of these joints were also observed carefully by scanning electron microscope. The TiAl based alloy with a fully lamellar microstructure is more suitable for diffusion bonding to TC4 alloy. Adding a Ti‐based amorphous interlayer is more conducive to the element diffusion, giving rise to the improvement in the mechanical properties of the diffusion bonded joints. Results also show that the diffusion bonded joints form a metallurgical bond and fracture in a brittle manner.  相似文献   
2.
Horizontal twin‐roll casting technology was successfully introduced to produce high‐performance copper/aluminum (Cu/Al) laminated composites. The interface morphology, electrical properties and peeling strength after different annealing and cold rolling processes were investigated and contrasted with Cu/Al clad plates fabricated by conventional methods. The results show that sound metallurgical bonding between the copper and aluminum matrix can be attained after the horizontal twin‐roll casting processes and Al2Cu is the only intermetallics at the interfacial region, the thickness of interfacial interlayer is about 0.7 μm. The peeling strength is 31.4 N/mm and can be further increased to 37.1 N/mm after annealing at 250 °C. However, higher temperature like 400 °C will cause the excessive growth of intermetallics so that peeling strength sharply decreases to 9.2 N/mm. Electrical conductivity of the clad plate is 51 MS/m. At the same electrical current intensity, the temperature‐rise of the composite plate is between the pure copper plate and the aluminum plate, and closer to the copper plate. All of the properties are outstanding than that of Cu/Al clad plate fabricated by conventional methods.  相似文献   
3.
In this paper, the electromagnetic welding of two dissimilar metals was simulated using LS-Dyna software. Results of finite element simulations were used to obtain a high quality weld between the aluminum and stainless steel by the minimum discharge energy. The experiments were designed according to a Box-Behnken response surface methodology to extract the regression models from the significant parameters of voltage, standoff distance and thickness of driver. Possibility of weld formation were predicted by using the weldability window of aluminum-stainless steel. According to the results of analysis of variance, the quality of weld can be improved by applying the following values of parameters: voltage of 15 kV, standoff distance of 1.5 mm and driver thickness of 1 mm. The results of the finite element simulations were confirmed by conducting the electromagnetic welding at the optimal condition of parameters. In order to evaluate the quality of joints, the microstructure of weld interface was studied using the optical and scanning electron microscope.  相似文献   
4.
Selective laser melting is a laser‐based additive manufacturing process applying layer manufacturing technology and is used to produce dense parts from metallic powders. The application of selective laser melting on carbon steels is still limited due to difficulties arising from carbon content. This experimental investigation aims at gaining an understanding of the application of the process on ultra high carbon steel, which is a special alloy with remarkable structural properties suitable for different industrial applications. The feedstock ultra high carbon steel (2.1% C) powder, 20 μm to 106 μm was prepared by water atomizing technique. This powder was used for the selective laser melting to build specimens 10×10×40 mm in dimensions. To decrease the thermal stresses during layer by layer building, laser scanning was done through 5×5 mm random island patterns while layer thickness was 30 μm. Laser beam diameter, maximum power output, layer thickness and scan speed range were 0.2 mm, 100 W, 30 μm and 50–200 mm/s respectively. The process was done inside high purity nitrogen environment, with less than 0.5% oxygen content. The results illustrate the influence of scan speed from 50 to 200 mm/s on product geometry and dimensions, surface roughness, internal porosity and cracks, microstructure and surface hardness. The effect of post heat treatment by heating and holding for one hour (annealing) at different temperatures of 700°C, 750°C, 950°C is studied. The results indicate that selective laser melting is able to produce near to 95% density of ultra high carbon steel parts with acceptable geometry and surface quality. Porosity cracks, and microstructure formed during the process could be controlled through proper selection of process parameters and post heat treatment. Industrial ultra high carbon steel products can be rapidly fabricated by selective laser melting.  相似文献   
5.
The modification of polypropylene fibre during their production is usually performed with the aim to improve some end-use properties of final polypropylene textiles. The most common procedure for the modification of polypropylene fibres involves adding additives in the form of masterbaches, which are incorporated into polymer by physical means during fibre formation. The presented work is focused on the investigation the effect of natural organic additive cellulose on the preparation, morphology and the thermal properties of polypropylene fibres. The series of modified pre-oriented and drawn polypropylene fibres with different content of cellulose from 0 wt. % to 3 wt. % were prepared via the classical discontinuous process of melt spinning and drawing. The non-isothermal crystallization and melting behaviour of pre-oriented and drawn polypropylene fibres were analysed by differential scanning calorimetry tests under nitrogen atmosphere. The surface morphology of polypropylene fibres and cross-sectional shapes were examined by scanning electron microscopy. The obtained experimental results were compared with reference polypropylene fibres prepared under the same technological conditions.  相似文献   
6.
Multiwall carbon nanotube buttressed aluminium 7075 metal matrix composite was synthesized through an amended liquid metallurgy method, which consisted semisolid stirring, ultrasonic treatment and squeeze casting. Aim was to investigate its machinability and surface morphology during electrical discharge machining. Variable machining factors were peak current, pulse-on time and gap voltage, whereas the responses under investigation were electrode wear rate, material removal rate and average surface roughness. Results revealed electrode wear rate, material wear rate and average surface roughness increased on increasing peak current and pulse-on time, but all these responses behaved inversely with the increase of gap voltage. Average surface roughness reduced by around 44 % on reducing the peak current from 10 A to 4 A and increasing gap voltage from 55 V to 80 V at constant pulse-on time of 300 μs; however, it increased by around 25 % on reducing the gap voltage from 80 V to 55 V and increasing the pulse-on time from 100 μs to 300 μs at constant peak current of 10 A. Significance of the process parameters were verified, regression models were developed and morphology of the machined surfaces was studied. Finally, multiple response optimization was conducted following grey relational approach.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号