首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   62篇
  国内免费   4篇
电工技术   1篇
综合类   2篇
化学工业   214篇
金属工艺   7篇
机械仪表   1篇
建筑科学   4篇
能源动力   34篇
轻工业   32篇
石油天然气   4篇
无线电   79篇
一般工业技术   130篇
冶金工业   2篇
原子能技术   9篇
自动化技术   9篇
  2024年   3篇
  2023年   20篇
  2022年   12篇
  2021年   24篇
  2020年   25篇
  2019年   22篇
  2018年   19篇
  2017年   27篇
  2016年   19篇
  2015年   20篇
  2014年   29篇
  2013年   20篇
  2012年   27篇
  2011年   39篇
  2010年   25篇
  2009年   29篇
  2008年   25篇
  2007年   22篇
  2006年   23篇
  2005年   12篇
  2004年   17篇
  2003年   7篇
  2002年   15篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   2篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1976年   1篇
排序方式: 共有528条查询结果,搜索用时 15 毫秒
1.
Solid polymer electrolytes (SPEs) synthesized by the sol-gel process and designated as di-ureasils have been prepared through the incorporation of lithium perchlorate, LiClO4, into the d-U(2000) organic-inorganic hybrid network. Electrolytes with lithium salt compositions of n (where n indicates the number of oxyethylene units per Li+ ion) between ∞ and 0.5 were characterized by conductivity measurements, cyclic voltammetry at a gold microelectrode, thermal analysis and Fourier transform Raman (FT-Raman) spectroscopy. The conductivity results obtained suggest that this system offers a quite significant improvement over previously characterized analogues doped with lithium triflate [S.C. Nunes, V. de Zea Bermudez, D. Ostrovskii, M.M. Silva, S. Barros, M.J. Smith, R.A. Sá Ferreira, L.D. Carlos, J. Rocha, E. Morales, J. Electrochem. Soc. 152 (2) (2005), A429]. “Free” perchlorate ions, detected in all the samples examined, are identified as the main charge carriers in the sample that yields the highest room temperature conductivity (n = 20). In the di-ureasils with n ≤ 10 ionic association is favoured and the ionic conductivity drops.  相似文献   
2.
Masanori Yamada  Hirofumi Aono 《Polymer》2008,49(21):4658-4665
Double-stranded DNA is one of functional polymers, but the large amounts of DNA sources, such as salmon milt and shellfish gonads, have been discarded as industrial wastes. Therefore, conversion of this discarded DNA to be a useful material would be beneficial to utilize the unique property of DNA. These materials including DNA have been prepared by mixing with the organic polymers, such as alginic acid, collagen, and chitosan. However, since these materials have consisted from entirely organic components, these do not have the mechanical strength for a material. So, we prepared the organic-inorganic hybrid materials by mixing DNA with silane coupling reagents bis(trimethoxysilylpropyl)amine or bis[(3-trimethoxysilyl)propyl]ethylenediamine. These hybrid materials with the flexibility were water-insoluble and resistant to hydrolysis by nuclease. In addition, the mechanical strength of this hybrid material was approximately twice as high as that of DNA without mixing with silane coupling reagents. Furthermore, the double-stranded DNA in the hybrid materials has been maintained in a B-form structure in aqueous solution. Thus, we demonstrated the utilization of DNA as a functional material. As a result, this material could selectively accumulate harmful DNA-intercalating compounds with the planar structure, such as dibenzo-p-dioxin, dibenzofuran, and ethidium bromide. Organic-inorganic hybrid material including double-stranded DNA has potential to serve as a useful biomaterial for medical, engineering, and environmental applications.  相似文献   
3.
The common goal of CTR, but in particular of ICF, is low yield-high gain. Fission triggered large TN explosive devices meet the second but not the first of these conditions. These devices depend on the rare isotopes U235, Pu239, or U233, but for them the fusion energy output greatly exceeds the output from fission, limiting the fallout. In thinking about different ways to combine fusion with fission, there are three questions: (1) Are there ways where both conditions can be met, and where the fallout from fission is small? (2) Can the conditions be met without the use of U235, Pu239, or U233, but with U238, Th232, and perhaps with the fission of light nuclei like B10 or Li6, the latter having no fallout? (3) Are there concepts for MF, combining fusion with fission, without U235, Pu239 or U233? In my talk I will present reasons why under the above stated conditions two things seem to be possible: (1) The greatly facilitated fast ignition of thermonuclear microexplosions with a small amount of U238 or Th232. (2) The greatly enhanced pulsed MF burn aided by the fission of light nuclei such as B10, but also of the U238 and Th232 and with a neutron moderator. In either one of these cases the burn is “autocatalytic” in the sense that neutron-induced nuclear reactions in a halo surrounding the fusion plasma drive thermomagnetic currents compressing and increasing its neutron production rate.  相似文献   
4.
Polyimide/silica ceramers, based on the products of the hydrolysis of tetraethoxysilane (TEOS) and a commercial poly(amic acid) solution, were used to fabricate unidirectional carbon fibre composites, which were subsequently evaluated with respect to thermal and mechanical properties. There is evidence to suggest that the silica component of these ceramers is present as dispersed discrete particles at low silica concentration (i.e. 7 wt%) and as fine interconnected domains trapped within the polyimide matrix at higher silica content (i.e. 14 wt%). The dimensions of the silica domains were in the region of 7–20 nm. Carbon fibre composites produced from ceramer solutions (CF/ceramers) were found to exhibit lower thermal expansion and a greater retention of flexural and interlaminar shear properties at elevated temperature than the corresponding polyimide-matrix composites (CF/polyimide). The properties of CF/ceramers were generally better for systems containing the higher amount of silica and were improved further by lowering the pH value of the precursor ceramer solution. This is believed to have resulted from the enhanced fluidity of the ceramer gel within the pre-impregnated fibres, giving rise to a higher packing density of the fibres and a more homogeneous distribution of fibres. CF/ceramers were also found to exhibit a better thermal oxidative stability at 350°C than the corresponding CF/polyimide, although a substantial amount of porosity developed in the case of ceramers with the higher silica content.  相似文献   
5.
Immobilization is an effective method to promote the application of enzyme industry for improving the stability and realizing recovery of enzyme.To some extent,the performance of immobilized enzyme depends on the choice of carrier material.Therefore,the development of new carrier materials has been one of the key issues concerned by enzyme immobilization researchers.In this work,a novel organic-inorganic hybrid material,nickel-carnosine complex (NiCar),was synthesized for the first time by solvothermal method.The obtained NiCar exhibits spherical morphology,hierarchical porosity and abun-dant unsaturated coordination nickel ions,which provide excellent anchoring sites for the immobiliza-tion of proteins.His-tagged organophosphate-degrading enzyme (OpdA) and ω-transaminase (ω-TA)were used as model enzymes to evaluate the performance of NiCar as a carrier.By a simple adsorption process,the enzyme molecules can be fixed on the particles of NiCar,and the stability and reusability are significantly improved.The analysis of protein adsorption on NiCar verified that the affinity adsorp-tion between the imidazole functional group on the protein and the unsaturated coordination nickel ions on NiCar was the main force in the immobilization process,which provided an idea way for the develop-ment of new enzyme immobilization carriers.  相似文献   
6.
A zirconium hybrid polyhedral oligomeric silsesquioxane derivative (Zr–POSS–bisDOPO) is synthesized by the corner-capping and Kabachnik–Fields reactions. It is characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR), and then used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) to endow epoxy resin (EP) with flame retardancy. The flame retardancy, thermal stability, and mechanical properties of the cured EP/Zr–POSS–bisDOPO composites are investigated. The results show that when Zr–POSS–bisDOPO is added by 5–7 wt%, the EP/Zr–POSS–bisDOPO composites pass the UL-94 V-0 rating test. In addition, they have a better flame-retardant effect than pure EP. The combination of Zr atom embedded in the Si O cubic cage and the two phosphaphenanthrene substituent groups in one corner of cubic cage is expected to realize the Zr/Si/P ternary intramolecular hybrid synergistic effect and achieve the possibility of dispersing metal–POSS cages at a sub-micrometer-scale level into polymer matrix. It also proves that Zr–POSS–bisDOPO produces phosphorus-containing free radicals and terminates the chain reactions in gas phase. Meanwhile the Si O Si and Zr O units are retained in the solid phase, which promote the char formation and enhance the flame retardancy. This kind of Zr-doped POSS will be helpful for developing the new metal–POSS hybrid flame-retardant and polymer composites.  相似文献   
7.
Utilizing the solvothermal synthesis technique, lithium intercalated tungsten disulfide LixWS2 with x > 1 was obtained, which was allowed to react with water to the formation of single-molecule-layer suspension of tungsten disulfide. The layered nanocomposites PEG, PEO/WS2, intercalating poly(ethylene glycol) (PEG, MW ≈ 1 × 103, 6 × 103, 1 × 104) and poly(ethylene oxide) (PEO, MW ≈ 3 × 105) into the tungsten disulfide host galleries, were prepared using the improved exfoliation-adsorption technique. It was revealed that the intercalated polymers within the host galleries are in a double-layer arrangement with an interlayer expansion of about 9 Å. Despite high conductivity of the host material, those of the PEG, PEO/WS2 nanocomposites were found to be high in the order of 1 × 10−2 to 10−3 S cm−1 at ambient temperature, resulted from the guest-host charge transfers.  相似文献   
8.
The nonisothermal and isothermal crystallizations of low‐density polyethylene (LDPE) and polypropylene (PP) in phosphate glass (Pglass)–polymer hybrid blends were studied through differential scanning calorimetry (DSC). As the Pglass volume fraction was increased, the percentage crystallinity decreased. The half‐time for crystallization decreased as the propagation rate constant rose, for both of the polymer matrices, with increasing Pglass concentrations. The Pglass was observed to be a nucleating agent for formation of two‐ or three‐dimensional spherulites in the hybrids. Tensile modulus improved for both of the Pglass–polymer hybrids up to 40% Pglass, but the energy to break decreased. Tensile strength changed slightly with the addition of Pglass to the LDPE matrix, exhibiting a larger value than that of pure LDPE at 30%. The tensile strength decreased as more Pglass was added to the PP matrix. The observed differences between tensile properties of the Pglass–PP and Pglass–LDPE hybrids at identical Pglass volume concentration were found to be consistent with that of the crystallization behavior of the hybrids. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3445–3456, 2003  相似文献   
9.
Organic-inorganic hybrid electrolytes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (D2000) complexed with LiClO4 via the co-condensation of an epoxy trialkoxysilane and tetraethoxysilane have been prepared and plasticized by a solution of ethylene carbonate (EC)/propylene carbonate (PC) mixture (1:1 by weight). The cross-linked hybrid network shows no solvent exudation and retains a large amount of plasticizer over 70 wt.% in stable state. The in situ built in silica network provides the hybrid electrolytes with good mechanical properties. The ionic conductivity of the dry hybrid electrolyte films was enhanced by two orders of magnitude via plasticization, reaching a maximum conductivity value of 4.0 × 10−3 S/cm at 30 °C. Variable temperature 7Li-{1H} magic angle spinning (MAS) NMR demonstrated that the Li+ cations can be complexed by the polymer network as well as by the plasticizing solvents, but not with the incorporated silica network. Furthermore, the 7Li chemical shift change indicated a progressive change in the lithium coordination from lithium-polymer to lithium-solvent with increasing temperatures. The role of the solvents and the mobility of the lithium ions were investigated by pulsed gradient spin echo (PGSE) NMR measurements to elucidate the behavior of the ionic conductivity.  相似文献   
10.
The exceptional photophysical properties of 3D organic–inorganic lead halide hybrids (OILHs) endow their significant potential for usage in optoelectronics, which has sparked intense research on novel 3D OILHs and associated applications. However, constructing new 3D OILHs based on large organic cations suffers from tough challenges due to the limitation of the Goldschmidt tolerance factor rule, let alone further explorations of their practical applications. Herein, a brand-new 3D lead chloride hybrid, (1MPZ)Pb4Cl10·H2O ( 1 , 1MPZ = 1-methylpiperazine) is reported, featuring a dense 3D lead chloride framework made of the corner-, edge-, and face-shared lead chloride polyhedra. 1 presents a broadband white light emission with a large Stokes shift and a nanosecond photoluminescence lifetime, which originates from radiative recombination of self-trapped excitons (STEs) induced by the highly distorted structure. Such a reabsorption-free and fast-decayed STEs emission coupling with the dense 3D architecture further enables 1 with effective X-ray scintillation with good sensitivity. Impressively, 1 also shows superior environmental and radiation stability. This study provides a new 3D OILH with appealing luminescence, not only expanding the 3D OILH family but also inspiring the exploitation of their optoelectronic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号