首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1405篇
  免费   6篇
  国内免费   25篇
电工技术   1篇
综合类   21篇
化学工业   541篇
金属工艺   36篇
机械仪表   5篇
建筑科学   47篇
矿业工程   8篇
能源动力   424篇
轻工业   7篇
水利工程   1篇
石油天然气   6篇
无线电   82篇
一般工业技术   234篇
冶金工业   21篇
原子能技术   1篇
自动化技术   1篇
  2024年   4篇
  2023年   84篇
  2022年   119篇
  2021年   119篇
  2020年   99篇
  2019年   89篇
  2018年   59篇
  2017年   56篇
  2016年   53篇
  2015年   26篇
  2014年   100篇
  2013年   60篇
  2012年   52篇
  2011年   84篇
  2010年   63篇
  2009年   79篇
  2008年   90篇
  2007年   39篇
  2006年   25篇
  2005年   36篇
  2004年   25篇
  2003年   22篇
  2002年   15篇
  2001年   17篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1991年   1篇
排序方式: 共有1436条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
2.
Pathogens pose a serious challenge to environmental sanitation and a threat to public health.The frequent use of chemicals for sterilization in recent years has not only caused secondary damage to the environment but also increased pathogen resistance to drugs,which further threatens public health.To address this issue,the use of non-chemical antibacterial means has become a new trend for environmental disinfection.In this study,we developed red phosphorus nanoparticles(RPNPs),a safe and degradable photosensitive material with good photocatalytic and photothermal properties.The red phosphorus nanoparticles were prepared using a template method and ultrasonication.Under the irradiation of simulated sunlight for 20 min,the RPNPs exhibited an efficiency of 99.98%in killing Staphylococcus aureus due to their excellent photocatalytic and photothermal abilities.Transmission electron microscopy and ultraviolet–visible spectroscopy revealed that the RPNPs exhibited degradability within eight weeks.Both the RPNPs and their degradation products were nontoxic to fibroblast cells.Therefore,such RPNPs are expected to be used as a new type of low-cost,efficient,degradable,biocompatible,and eco-friendly photosensitive material for environmental disinfection.  相似文献   
3.
In this work, we designed a magnetically-separable Fe3O4-rGO-ZnO ternary catalyst, ZnO anchored on the surface of reduced graphene oxide (rGO)-wrapped Fe3O4 magnetic nanoparticles, where rGO, as an effective interlayer, can enhance the synergistic effect between ZnO and Fe3O4. The effects of three operational parameters, namely irradiation time, hydrogen peroxide dosage, and the catalyst dosage, on the photo-Fenton degradation of methylene blue and methyl orange were investigated. The results showed that the Fe3O4-rGO-ZnO had great potential for the destruction of organic compounds from wastewater using the Fenton chemical oxidation method at neutral pH. Repeatability of the photocatalytic activity after 5 cycles showed only a tiny drop in the catalytic efficiency.  相似文献   
4.
《Ceramics International》2020,46(12):19942-19951
1D TiO2 nanotube arrays (TNTs), as versatile nanostructures, have attracted a considerable amount of scientific attention, particularly in photocatalytic applications. In the present study, UV radiation-assisted anodization method with various irradiation times (30–120 min) was employed as a preferable approach to fabricating TNTs with remarkable optical property and photocatalytic activity. The results revealed that in situ irradiation not only improved the surface area (from 30.10 to 48.5 m2), but also increased the roughness factor (from 77.27 to 124.73). Furthermore, UV radiation had a significant impact on optical property and by altering elemental composition, led to a red shift in absorption edge (from 3.2 to 1.4eV). Meanwhile, voltammetric experiments showed that 120 min UV radiation during anodization was able to substantially cause a surge of the photocurrent density and the photoconversion efficiency of TNTs from 0.15 to 0.55 mA cm−2 and from 13% to 40%, respectively. As a consequence of the improvement in optical property and photochemical features, anodic TNTs fabricated under 120 min UV radiation could increase the photocatalytic degradation of 2,4-DCP from 75% to 100%. Moreover, the kinetics study showed that all photocatalytic reactions followed zero-order kinetics which rate constant over the synthesized TNTs under 120 min UV radiation was about 5.1 times greater than that of conventionally fabricated TNTs. Likewise, the pathway of photocatalytic degradation and the proportion of reactive species in this process were assessed by scavenging tests. The results confirmed that holes (h+) play the main role that 53% of photocatalytic degradation occurred via both direct and indirect reactions with h+ species. The rest of the degradation pathways were also allocated to e and O2 species by accounting for 37% and 10%, respectively.  相似文献   
5.
Ni2P nanoparticles and CdS nanorods were grew together on a mesoporous g-C3N4 through a facile in-situ solvothermal approach. Under visible light (λ > 400 nm), the as-prepared ternary PCN–CdS-5% Ni2P composite displays a high H2 evolution rate with 2905.86 μmol g?1 h?1, which is about 14, 18 and 279 times that of PCN–CdS, PCN–Ni2P and PCN, respectively. The enhanced photocatalytic activity is mainly attributed to the improved separation efficiency of the photocarriers by the type II PCN–CdS heterojunction and the effective extraction of photogenerated electrons by Ni2P. Meanwhile, Ni2P acts as co-catalyst to provide the photocatalytic active site for hydrogen reduction. In addition, PCN–CdS-5% Ni2P composite exerts good stability in 12-h cycles.  相似文献   
6.
《Advanced Powder Technology》2020,31(12):4585-4597
Focussing on visible light active ferrites for high performance removal of noxious pollutants, we report the synthesis of Mg0.5NixZn0.5-xFe2O4 (x = 0.1, 0.2, 0.3, 0.4, & 0.5) ferrite nanoparticle for degradation of reactive blue-19 (RB-19). Lattice parameters calculated using intense X-ray diffraction (XRD) peaks and Nelson-Riley plots (N-R plot) are in well agreement with each other. The sample Mg0.5Ni0.4Zn0.1Fe2O4 (M5N4) exhibits best performance with 99.5% RB-19 degradation in 90 min under visible light. Photoluminescence (PL) results confirm that recombination of charge carriers is highly reduced in the photocatalyst. Scavenging experiments suggest that O2 radicals were the dominant species responsible for photocatalytic performance. The photocatalytic mechanism was explained in terms of dopant driven shifting of conduction bands and valence bands (calculated by Mott-Schottky plots). The thermodynamic probability of radical generation along with role of redox cycles of metal ions has been discussed in the mechanism. The dye degradation was ascertained by detection of intermediates via mass spectrometry analysis and a possible degradation route was also predicted. The findings in this work provide intriguing opportunities to modify the electronic band structure of spinel ferrites for visible and solar light photocatalytic activity for environmental detoxification.  相似文献   
7.
Photocatalysts often show excellent performances on the basis of their surface state of exposed faces with high reactivity, but unfortunately surfaces of this type are usually concealed into the interior of crystals for their high surface energy. We report here a possibility that for fluorine-terminated surfaces of monoclinic ZrO2, these higher-energy surfaces could be retained and exposed. Urchin-like ZrO2 hollow microspheres (UZHS) composed of nanoribbons with exposed (010) facets are obtained through a fluoride mediately solvothermal method. We prove the stabilization effect of fluorine adsorption on (010) facets by density functional theory calculations. More interestingly, UZHS exhibit tunable photocatalytic selectivity in dye degradation. The fluorinated UZHS exhibit good performances both on decomposing Congo red (CR) and methylene blue, while the surface-modified UZHS by calcination only favor decomposition of CR.  相似文献   
8.
Application of brown titanium dioxide (TiO2-x) and its modified composite forms in the photocatalytic decomposition of organic pollutants in the environment is a promising way to provide solutions for environmental redemption. Herein, we report the synthesis of effective and stable TiO2-x nanoparticles with g-C3N4, RGO, and multiwalled carbon nanotubes (CNTs) using a simple hydrothermal method. Among all the as-synthesized samples, excellent photocatalytic degradation activity was observed for RGO-TiO2-x nanocomposite with high rate constants of 0.075 min?1, 0.083 min?1 and 0.093 min?1 for methylene blue, rhodamine-B, and rosebengal dyes under UV–Visible light irradiation, respectively. The altered bandgap (1.8 eV) and the large surface area of RGO-TiO2-x nanocomposite impacts on both absorption of visible light and efficiency of photogenerated charge electron (e?)/hole (h+) pair separation. This resulted in enhanced photocatalytic property of carbon-based TiO2-x nanocomposites. A systematic study on the influence of different carbon nanostructures on the photocatalytic activity of brown TiO2-x is carried out.  相似文献   
9.
Copper indium disulfide (CuInS2) thin films as an absorption layer for solar cell and photocatalytic degradation of organic pollutants, were successfully electrodeposited on the FTO coated glass substrate using the simple and inexpensive electrodeposition method and a sulfurization process. The effects of the Cu/In molar ratio, annealing temperature and kind of Cu2+ precursor (Cu(salen) and Cu(acac)2 as novel Cu2+ precursors) on the structural and morphological properties of samples were examined. The XRD diffraction patterns and energy dispersive spectroscopy measurements exhibit that high-quality film with superior crystalline structure was formed in the presence of Cu(salen) as Cu2+ precursor. Also, we found that a suitable heat treatment temperature could suppress the CuS phases and form well-crystallized CIS. As we know, this is the first reported efficiency for any CuInS2 superstrate solar cell to date that fabricated using Cu(salen) as Cu2+ precursor. In addition, the photocatalytic degradation of organic dye in the presence of as-synthesized CuInS2 thin films was studied. The as-prepared semiconductor photocatalysts have a good reusability; it can be successfully reused for 5 times recycling photoactivity tests.  相似文献   
10.
FeO-doped TiO2 nanoparticle photocatalysts were immobilized onto the surface of fibrous activated carbon (ACF) via a sol-gel process. As an adsorbent and photocatalyst, FeO-TiO2 on immobilized ACFs (FeO-TiO2/ACF) greatly improved the photocatalysis rate of hydrogen production as compared with pure TiO2 and ACF-TiO2 under UV irradiation and visible light. The addition of ACFs surface significantly reduced the photogenerated pairs of electrons-hole recombination, thereby promoting the photocatalysis action of doped photo-metal oxides of FeO-TiO2. Co-doping of FeO onto the lattice of the TiO2 approach can improve the absorption activity of visible light through photo-metal oxide of TiO2 and further enhance hydrogen production under visible light. The photocatalytic fabrics (FeO-TiO2/ACF) were effortlessly split out from the experimental solution for re-utilization and exhibited high stability even after five complete regeneration cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号