首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8963篇
  免费   396篇
  国内免费   210篇
电工技术   83篇
综合类   198篇
化学工业   2882篇
金属工艺   220篇
机械仪表   189篇
建筑科学   126篇
矿业工程   24篇
能源动力   863篇
轻工业   56篇
水利工程   6篇
石油天然气   358篇
武器工业   12篇
无线电   2130篇
一般工业技术   2155篇
冶金工业   44篇
原子能技术   46篇
自动化技术   177篇
  2024年   13篇
  2023年   121篇
  2022年   76篇
  2021年   239篇
  2020年   210篇
  2019年   178篇
  2018年   155篇
  2017年   337篇
  2016年   285篇
  2015年   398篇
  2014年   613篇
  2013年   608篇
  2012年   420篇
  2011年   724篇
  2010年   568篇
  2009年   569篇
  2008年   571篇
  2007年   568篇
  2006年   507篇
  2005年   373篇
  2004年   330篇
  2003年   291篇
  2002年   275篇
  2001年   175篇
  2000年   175篇
  1999年   123篇
  1998年   107篇
  1997年   96篇
  1996年   100篇
  1995年   73篇
  1994年   70篇
  1993年   48篇
  1992年   31篇
  1991年   20篇
  1990年   16篇
  1989年   12篇
  1988年   18篇
  1987年   10篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   17篇
  1982年   14篇
  1980年   2篇
  1978年   1篇
  1977年   3篇
  1975年   4篇
  1974年   4篇
排序方式: 共有9569条查询结果,搜索用时 14 毫秒
1.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
2.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
3.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   
4.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
5.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
6.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
7.
Modern liquid crystal displays (LCDs) require novel technologies, such as new alignment methods to eliminate alignment layers, fast response and long operation time. To this end, we report an overview of recent efforts in LCD technologies devoted to realize more display modes having no alignment layer, faster switching time and low battery consumption. In particular, we overview recent advances on the liquid crystals (LCs) alignment for display applications, which includes superfine nanostructures, polymeric microchannels and polymer stabilized LCs. Furthermore, we analyze the main optical and electro-optical properties of new generation LCDs displays addressing a particular attention to LCs blue phase hosting gold nanoparticles. Moreover, we focus on the progress of electrofluidic displays, which demonstrates characteristics that are similar to LCDs, with attention on various pixel designs, operation principles and possible future trends of the technology.  相似文献   
8.
Although many colloidal assembling systems have been reported, most systems suffer from severe aggregation under high solid concentrations, which can often be observed in typical hetero-aggregation system. In this study, we created a hetero-assembly system using concentrated (~50 vol%) suspensions by mixing large SiO2 particles modified with polyacrylic acid partially complexed with oleylamine (PAA-OAm) and small SiO2 particles modified with polyethyleneimine partially complexed with oleic acid (PEI-OA) in a non-aqueous solvent. We demonstrated that hetero-assembly is driven by the interactions between the uncomplexed carboxyl/amine groups of the PAA/PEI present on the particles, while severe aggregation is simultaneously prevented by the steric repulsions of the aliphatic oleyl chains. Comparison of the cross sections of the in-situ solidified hetero-assembled suspensions with those of ideally assembled structures which were reproduced by a simulation considering the statistical distribution of particles strongly supported successful particle assembling via the proposed approach. The results revealed that the OA content in the PEI-OA complex was the dominant factor that controlled the dispersion and assembling state of the binary particles. The significance of this study is that our findings will provide a class of colloidal dispersion state which binary particles were assembled in a high solid content suspension without forming strong aggregates.  相似文献   
9.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
10.
The micromechanics models for composites usually underpredict the tensile strength of polymer nanocomposites. This paper establishes a simple model based on Kelly–Tyson theory for tensile strength of polymer/CNT nanocomposites assuming the effect of interphase between polymer and CNT. In addition, Pukanszky model is joined with the suggested model to calculate the interfacial shear strength (τ), interphase strength (σi) and critical length of CNT (Lc).The proposed approach is applied to calculate τ, σi and Lc for various samples from recent literature. It is revealed that the experimental data are well fitted to calculations by new model which confirm the important effect of interphase on the properties of nanocomposites. Moreover, the derived equations demonstrate that dissimilar correlations are found between τ and B (from Pukanszky model) as well as Lc and B. It is shown that a large B value obtained by strong interfacial adhesion between polymer and CNT is adequate to reduce Lc in polymer/CNT nanocomposites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号