首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
化学工业   2篇
轻工业   1篇
一般工业技术   1篇
原子能技术   10篇
自动化技术   7篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
A system based on ROOT for handling the micro-DST of the BaBar experiment is described. The purpose of the Kanga system is to have micro-DST data available in a format well suited for data distribution within a world-wide collaboration with many small sites. The design requirements, implementation and experience in practice after three years of data taking by the BaBar experiment are presented.  相似文献   
2.
MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way.

Program summary

Program title: MODARCatalogue identifier: AEGA_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 155 373No. of bytes in distributed program, including test data, etc.: 14 815 461Distribution format: tar.gzProgramming language: C++Computer: Most Unix workstations and PCOperating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP.RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself.Classification: 17.6External routines: ROOT version 5.24.00 (http://root.cern.ch/drupal/)Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two-step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming.Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two-dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way.Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two-dimensional data.Running time: The CPU time needed to smear a two-dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two-dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.  相似文献   
3.
《Advanced Robotics》2013,27(9):1071-1092
This paper closes a triptic to address the issue of the forward kinematics problem (FKP) aimed at certified solving with an exact algebraic method. This solving method was described in the first article published in Advanced Robotics. The second one investigated the formulation specifically applied to the planar parallel manipulators. This third paper is the logical one in the footsteps of the formersones, since it continues the formulation analyses and brings them to the general spatial parallel manipulator. Hence, this paper focuses on the displacement-based equation systems. This paper is the first one to present a synthesis on forward kinematics modeling focusing on finding an optimal mathematical formulation based on the displacement-based equation systems. The majority of parallel manipulators in applications can be modeled by the 6-6 hexapod or so-called Gough platform which is constituted by a fixed base and a mobile platform attached to six kinematics chains with linear (prismatic) actuators located between two revolute or Cardan joints. Again, in order to implement algebraic methods, the parallel manipulator kinematics shall be formulated as polynomial equations systems where the equation number is at least equal to the unknown numbers. Six geometric formulations were derived. The selected algebraic proven method is implementing Gröbner bases from which it constructs an equivalent univariate polynomial system. The resolution of this last system exactly determines the real solutions which correspond to the manipulator postures. The FKP resolution of the general 6-6 parallel manipulator outputs 40 complex solutions. Several instantiations shall be computed in order to select the model which leads to the FKP resolution with the lowest response times and smaller file sizes. It was possible to reject three modelings leading to bad performances or resolution failure. It was possible to determine one formulation where the solving computations were definitely better than the others.  相似文献   
4.
施肥对烟草生长和根际土壤微生物数量的影响   总被引:10,自引:0,他引:10  
对烟草品种G80进行了氮素形态配比和施肥方式的试验。结果表明,随硝态氮比例的增加,旺长期烟草根系干重随之减少,而在采收期根系干重受不同氮素配比影响的规律不明显;窄幅条施处理的烟株叶面积最大,根系干重也最多,撒施处理的叶面积和根系干重最小。氮素形态配比对微生物数量的影响较小,而施肥方式对其影响较大。  相似文献   
5.
介绍了ROOT面向对象数据处理软件,并用它对MRPC的时间分辨测试进行数据处理。  相似文献   
6.
介绍了一套基于VME总线的实验室数据获取系统的设计及应用。此系统主要针对普通核物理或探测器实验室的实验探测器系统,获取系统硬件用通用ADC插件作为模数转换,用基于VME总线的单板机算计进行数据传输。获取程序基于ROOT数据处理平台,可实现在线监控数据,并使用直方图等数据格式将数据存储。通过这套系统获得的碲锌镉探测器对241Am的59 keVγ射线能谱,数据获取速率达4 MB/s。这套数据获取系统可很好地应用在探测器测试及相关实验领域。  相似文献   
7.
高能物理对撞机产生数百亿计的物理事例,而物理分析则是从中选取几千个有意义的事例,该分析过程是一个典型的大数据处理及数据挖掘应用。由此,设计高效的数据结构、存储及访问机制,快速挑选出有意义的物理事例十分重要。介绍事例的数据结构、存储和处理技术,分析高能物理数据的特点,提出一种以HBase,ROOT,BEAN及MapReduce为基础的新型高能物理数据存储及处理技术系统。利用HBase存储数据、MapReduce实现并行处理,选择ROOT和BEAN作为高能物理分析框架,并给出具体设计与实现方案。测试结果表明,与传统高能物理数据存储系统相比,该系统具有更快的数据处理速度,当预筛选服务生效时能够更加有效地利用I/O和CPU资源。  相似文献   
8.
《Advanced Robotics》2013,27(9):995-1025
This article introduces an exact method to solve the forward kinematics problem (FKP) specifically applied to spatial parallel manipulators. The majority can modeled by the 6-6 parallel manipulator. This manipulator is a hexapod made up of a fixed base and a mobile platform attached to six kinematics chains with linear (prismatic) actuators located between two ball or Cardan joints. In order to implement algebraic methods, the parallel manipulator kinematics will be formulated as polynomial equations systems where the equation number is equal to the unknown numbers. One position-based kinematics model will be identified to solve the difficult FKP. The selected proven algebraic method implements Gröbner bases and constructs an equivalent univariate polynomial system. The exact resolution of this last system determines the real solution which exactly corresponds to the manipulator postures. The FKP resolution of the general 6-6 parallel manipulator outputs 40 complex solutions. We provide several examples of various hexapod types yielding eight real solutions. This algebraic method is exact and computes certified results.  相似文献   
9.
基于ROOT软件包的数据远程获取系统编程   总被引:6,自引:4,他引:2  
在Linux操作系统中利用ROOT数据软件包,可以开发出稳定可靠的远程数据获取系统。可以通过Intranet网络协议远程获取来自CAMAC机箱控制器的大量前端实验数据,并通过ROOT软件包开发用户操作图形界面,对数据进行离线分析。利用带有三种灵活数据接口方式:以太网、PCI和VSB接口的CAMAC机箱控制器一GTBC,并对其内含的嵌入式系统芯片进行网络服务器编程。可对实验数据进行稳定可靠的远程存取和图谱分析。  相似文献   
10.
KHBOOK是在ROOT程序包下编写的一个直方图监视程序。它读取Physmon的HBOOK文件,在线转化为ROOT文件,显示KLOE实验DAQ数据中各探测器、扇面、子层和读出系统数据链中的直方图,并以Repeat和Overlap的工作模式来跟踪、监视DAQ获取数据的质量。由于采用了对象行为单一的C^ 分类方法及各类之间的通信共享方法,KHBOOK程序具有运行快速、占用内存小、维护容易的特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号