首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
一般工业技术   3篇
  2017年   1篇
  2013年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Abstract

Context: Considering that bitter taste of drugs incorporated in orally disintegrating tablets (ODTs) can be the main reason for avoiding drug therapy, it is of the utmost importance to achieve successful taste-masking. The evaluation of taste-masking effectiveness is still a major challenge.

Objective: The objective of this study was to mask bitter taste of the selected model drugs by drug particle coating with Eudragit® E PO, as well as to evaluate taste-masking effectiveness of prepared ODTs using compendial dissolution testing, dissolution in the small-volume shake-flask assembly and trained human taste panel.

Materials and methods: Model drugs were coated in fluidized bed. Disintequik? ODT was used as a novel co-processed excipient for ODT preparation. Selected formulations were investigated in vitro and in vivo using techniques for taste-masking assessment.

Results and discussion: Significantly slower drug dissolution was observed from tablets with coated drug particles during the first 3?min of investigation. Results of in vivo taste-masking assessment demonstrated significant improvement in drug bitterness suppression in formulations with coated drug. Strong correlation between the results of drug dissolution in the small-volume shake-flask assembly and in vivo evaluation data was established (R?≥?0.970).

Conclusion: Drug particle coating with Eudragit® E PO can be a suitable approach for bitter taste-masking. Strong correlation between in vivo and in vitro results implicate that small-volume dissolution method may be used as surrogate for human panel taste-masking assessment, in the case of physical taste-masking approach application.  相似文献   
2.
Abstract

Shellac is a natural polymer, which is used as enteric coating material in pharmaceutical applications. The major objective of the present study was to investigate the potential of shellac for other purposes, namely to provide moisture-protective and taste-masking coatings as well as extended-release matrix tablets. The efficiency of shellac to achieve moisture protection and taste masking was compared with that of hydroxypropyl methylcellulose (HPMC), which is most frequently used for these purposes. Shellac-coated tablets showed lower water uptake rates than HPMC-coated systems at the same coating level. The stability of acetylsalicylic acid was higher in tablets coated with shellac compared with HPMC-coated systems, irrespective of the storage humidity. Therefore, lower shellac coating levels were required to achieve the same degree of drug protection. Shellac coatings effectively masked the unpleasant taste of acetaminophen tablets. Compared to HPMC, again lower coating levels were required to achieve similar effects. The resulting drug release in simulated gastric fluid was not significantly altered by the thin shellac coatings, which rapidly ruptured due to the swelling of the coated tablet core. In addition, shellac was found to be a suitable matrix former for extended-release tablets. The latter could be prepared by direct compression or via wet granulation using ethanolic or ammoniated aqueous shellac binder solutions. The resulting drug-release patterns could effectively be altered by varying different formulation and processing parameters.  相似文献   
3.
Shellac is a natural polymer, which is used as enteric coating material in pharmaceutical applications. The major objective of the present study was to investigate the potential of shellac for other purposes, namely to provide moisture-protective and taste-masking coatings as well as extended-release matrix tablets. The efficiency of shellac to achieve moisture protection and taste masking was compared with that of hydroxypropyl methylcellulose (HPMC), which is most frequently used for these purposes. Shellac-coated tablets showed lower water uptake rates than HPMC-coated systems at the same coating level. The stability of acetylsalicylic acid was higher in tablets coated with shellac compared with HPMC-coated systems, irrespective of the storage humidity. Therefore, lower shellac coating levels were required to achieve the same degree of drug protection. Shellac coatings effectively masked the unpleasant taste of acetaminophen tablets. Compared to HPMC, again lower coating levels were required to achieve similar effects. The resulting drug release in simulated gastric fluid was not significantly altered by the thin shellac coatings, which rapidly ruptured due to the swelling of the coated tablet core. In addition, shellac was found to be a suitable matrix former for extended-release tablets. The latter could be prepared by direct compression or via wet granulation using ethanolic or ammoniated aqueous shellac binder solutions. The resulting drug-release patterns could effectively be altered by varying different formulation and processing parameters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号