首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26639篇
  免费   1635篇
  国内免费   2090篇
电工技术   836篇
综合类   1443篇
化学工业   5836篇
金属工艺   3255篇
机械仪表   1925篇
建筑科学   318篇
矿业工程   182篇
能源动力   1282篇
轻工业   1750篇
水利工程   86篇
石油天然气   371篇
武器工业   122篇
无线电   4298篇
一般工业技术   6821篇
冶金工业   684篇
原子能技术   400篇
自动化技术   755篇
  2024年   121篇
  2023年   315篇
  2022年   497篇
  2021年   608篇
  2020年   680篇
  2019年   585篇
  2018年   604篇
  2017年   828篇
  2016年   778篇
  2015年   779篇
  2014年   1129篇
  2013年   1417篇
  2012年   1571篇
  2011年   2082篇
  2010年   1491篇
  2009年   1623篇
  2008年   1456篇
  2007年   1879篇
  2006年   1755篇
  2005年   1460篇
  2004年   1341篇
  2003年   1113篇
  2002年   937篇
  2001年   875篇
  2000年   769篇
  1999年   643篇
  1998年   570篇
  1997年   467篇
  1996年   390篇
  1995年   346篇
  1994年   314篇
  1993年   257篇
  1992年   179篇
  1991年   133篇
  1990年   90篇
  1989年   90篇
  1988年   54篇
  1987年   34篇
  1986年   17篇
  1985年   14篇
  1984年   14篇
  1983年   8篇
  1982年   10篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1976年   3篇
  1963年   3篇
  1959年   5篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
2.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
3.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
4.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
5.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
6.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
7.
Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.  相似文献   
8.
Cadmium selenide films were synthesized using simple electrodeposition method on indium tin oxide coated glass substrates. The synthesized films were post annealed at 200 °C, 300 °C and 400 °C. X-ray diffraction of the films showed the hexagonal structure with crystallite size <3 nm for as deposited films and 3–25 nm for annealed films. The surface morphology of films using field emission scanning electron microscopy showed granular surface. The high resolution transmission electron microscopy of a crystallite of the film revealed lattice fringes which measured lattice spacing of 3.13 Å corresponding to (002) plane, indicating the lattice contraction effect, due to small size of CdSe nanocrystallite. The calculation of optical band gap using UV–visible absorption spectrum showed strong red-shift with increase in crystallite size, indicating to the charge confinement in CdSe nanocrystallite.  相似文献   
9.
Over the past decades, the number of patients with dry eye disease (DED) has increased dramatically. The incidence of DED is higher in Asia than in Europe and North America, suggesting the involvement of cultural or racial factors in DED etiology. Although many definitions of DED have been used, discrepancies exist between the various definitions of dry eye disease (DED) used across the globe. This article presents a clinical consensus on the definition of DED, as formulated in four meetings with global DED experts. The proposed new definition is as follows: “Dry eye is a multifactorial disease characterized by a persistently unstable and/or deficient tear film (TF) causing discomfort and/or visual impairment, accompanied by variable degrees of ocular surface epitheliopathy, inflammation and neurosensory abnormalities.” The key criteria for the diagnosis of DED are unstable TF, inflammation, ocular discomfort and visual impairment. This definition also recommends the assessment of ocular surface epitheliopathy and neurosensory abnormalities in each patient with suspected DED. It is easily applicable in clinical practice and should help practitioners diagnose DED consistently. This consensus definition of DED should also help to guide research and clinical trials that, to date, have been hampered by the lack of an established surrogate endpoint.  相似文献   
10.
The performance of surface ionic conduction single chamber fuel cell (SIC‐SCFC) prepared by the sol gel method was studied on electric characteristics due to the differences of the operating temperature and humidity, the electrode distance and electrolyte film depth, and multiple cells with the series and parallel connections. The SIC–SCFC was arranged the both anode of Pt and cathode of Au on the boehmite electrolyte. The open circuit voltage (OCV) of single cell achieved a maximum of 530mV in the dry gas mixtures of O2/H2=50% in room temperature operation, and but it became decrease as over 60%. The OCV was maintained the constant value between operating temperatures of 30°C to 80°C, and but it was decreased sharply at over 90°C because a humidity on the cell became lower as increasing operating temperature. Then, the cell property was improved to 120°C by adding to the humidity of 70% using a humidifier. The electrode distance and the electrolyte film depth of SIC‐SCFC found to be contributed to the reductions of the cell resistance and the surface roughness on the electrode, respectively. Moreover, the power property of SIC‐SCFC was significantly improved by cell stacks comprised of the series or parallel connection of a cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号