首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
一般工业技术   2篇
  2015年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A lumped-parameter dynamic simulation of a single-effect ammonia–water absorption chiller is performed. Modeling is based on the continuity of species constituting the ammonia–water mixture and the conservation of energy for each component of the absorption chiller. Ordinary differential equations governing the response of each component and the algebraic equations describing the constitutive relation are solved in parallel by numerical integration. The model has been applied to a commercially available 10.5 kW absorption chiller to study the transients of temperature, pressure, concentration, and void fraction of each component during the start-up operation. The time constant of the absorption chiller is also investigated. The parameters considered are the bulk concentration of the ammonia–water solution, the mass of the solution filled, and the volumes of key components of the absorption chiller. In addition, the reduction of the time constant by a stepwise turn-up and turn-down of the flue gas flow rate during the primary stage of start-up period is demonstrated.  相似文献   
2.
This two-part article explores the dynamic behavior of a flash tank vapor injection heat pump system from a numerical simulation perspective. Part I provides a first-principles model describing the transient heat transfer and flow phenomena of the system with detailed modeling techniques for each component. The vapor injection scroll compressor is analyzed with the internal heat transfer between the refrigerant and metallic parts taken into account. Lumped-parameter models are developed for the flash tank and expansion devices. Heat exchangers are modeled using a finite volume approach and accounting for the complex tube circuitry. The separated flow model without interfacial exchange is utilized for two-phase flows in order to incorporate an appropriate void fraction model so that a more accurate prediction for refrigerant mass distribution can be achieved. The modular nature of the component models allows flexibility in the system configuration. Transient simulations are carried out for start-up and shut-down operations. A detailed comparison of model predictions against experimental data is presented in the companion paper.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号