首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57756篇
  免费   7243篇
  国内免费   5057篇
电工技术   5976篇
综合类   5833篇
化学工业   7713篇
金属工艺   3376篇
机械仪表   3024篇
建筑科学   3438篇
矿业工程   1426篇
能源动力   2484篇
轻工业   2352篇
水利工程   1525篇
石油天然气   3458篇
武器工业   446篇
无线电   7431篇
一般工业技术   7174篇
冶金工业   2248篇
原子能技术   2341篇
自动化技术   9811篇
  2024年   237篇
  2023年   794篇
  2022年   1468篇
  2021年   1762篇
  2020年   2056篇
  2019年   1963篇
  2018年   1793篇
  2017年   2328篇
  2016年   2386篇
  2015年   2358篇
  2014年   3468篇
  2013年   3879篇
  2012年   4278篇
  2011年   4651篇
  2010年   3415篇
  2009年   3484篇
  2008年   3311篇
  2007年   4009篇
  2006年   3416篇
  2005年   2969篇
  2004年   2529篇
  2003年   2216篇
  2002年   1900篇
  2001年   1590篇
  2000年   1345篇
  1999年   1068篇
  1998年   782篇
  1997年   763篇
  1996年   666篇
  1995年   530篇
  1994年   519篇
  1993年   368篇
  1992年   329篇
  1991年   286篇
  1990年   224篇
  1989年   190篇
  1988年   153篇
  1987年   101篇
  1986年   85篇
  1985年   62篇
  1984年   62篇
  1983年   49篇
  1982年   41篇
  1981年   37篇
  1980年   29篇
  1979年   12篇
  1978年   17篇
  1977年   13篇
  1959年   18篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
2.
The charge sources, as well as the charging mechanism of the contact electrification (CE) of polymers, are still debatable. Since CE is accompanied by destruction, it is considered that “hard contacting” via ball milling can induce covalent bond scission and produce naked-activated-charge sources. Regarding “soft contacting” via nano-scale sliding, which does not induce covalent bond scission, a frontier-electron, “f-electron, of the naked-activated-charge source is crucial to electron transfer among the naked-activated-charge sources. Here, we configure naked-activated-charge-source models, naked-activated-mechano-anion, and naked-activated-mechano-cation, which are produced by mechanical energy induced heterogeneous covalent bond scission, as well as naked-activated-mechano-radicals that are produced by homogeneous covalent bond scission. Regarding “soft contacting” among naked-activated-charge sources in a vacuum, f-electron can be transferred from a donor to an acceptor if the energy level of the donor is higher than that of the acceptor. The net amount of the normalized transferred-f-electrons is obtained by adopting settings in which the average energy level of the naked-activated-charge sources (as the donors) is higher than that of the sources employed as acceptors. Thus, the surfaces comprising the donors and acceptors will exhibit positive and negative net surface charges, respectively. We conclude that net surface charges depend on the average energy level of naked-activated-charge sources. Further, we observe that the alignment of polyethylene (PE)-polyvinyl chloride (PVC)-polytetrafluoroethylene (PTFE) to the average energy level is identical to that of the triboelectric series.  相似文献   
3.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
4.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
5.
6.
ABSTRACT

In this study, effect of calcium and gypsum on scheelite and fluorite was investigated using sodium oleate as collector. Micro-flotation and contact angle results showed that the adsorption of calcium could inhibit the hydrophobicity of scheelite and fluorite. Moreover, sulfate could enhance the inhibition. FT-IR results showed that calcium could be priori precipitated into calcium oleate and adsorb on mineral surface. The adsorption of calcium could increase the scheelite potential to IEP, while it showed limited effect on fluorite potential. However, the interaction of calcium on scheelite and fluorite in gypsum solution was more complex than that in calcium solution.  相似文献   
7.
随着网络建设以及信息化教学方法在高校教学过程中的应用普及,越来越多的高校使用在线巡课系统对教师的教学过程进行跟踪和管理,以便发现课堂教学中的亮点、问题和不足。文章提出的在线巡课系统,基于声源定位的技术,对传统的在线巡课系统做出了改进,解决了已有巡课系统中“只闻其声,不见其人”的问题,能够更直观地跟踪到教师的教学过程,包括教学行为以及师生互动过程,有效提升教务人员巡课效果和体验感受。  相似文献   
8.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
9.
In this paper, an off‐grid direction of arrival (DoA) estimation method is proposed for wideband signals. This method is based on the sparse representation (SR) of the array covariance matrix. Similar to the time domain DoA estimation methods, the correlation function of the sources was assumed to be the same and known. A new measurement vector is obtained using the lower‐left triangular elements of the covariance matrix. The DoAs are estimated by quantizing the entire range of continuous angle space into discrete grid points. However, the exact DoAs may be located between two grid points; therefore, this estimation has errors. The accuracy of DoA estimation is improved by the minimization of the difference between the new measurement vector and its estimated values. Simulation results revealed that the proposed method can enhance the DoA estimation accuracy of wideband signals.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号