首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  国内免费   1篇
化学工业   5篇
金属工艺   1篇
建筑科学   1篇
无线电   2篇
一般工业技术   8篇
  2024年   1篇
  2023年   5篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2010年   3篇
  2009年   3篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Turning brittle poly(lactic acid) (PLA) to ductile form via plasticizer inclusion is an effective option in the case of processing with high amounts of additives. Additionally, the integration of natural flame retardants to PLA involving bio-based plasticizer enables to use of environmentally friendly composites in conditions where fire resistance performance is required. In the current study, ductile green fire retardant PLA composites were manufactured using hydromagnesite&huntite (HH) as a natural fire retardant additive and acetyl tributyl citrate as a bio-based plasticizer. The influences of plasticizer and HH contents on the fire retardant, thermal and mechanical performances of the composites were explored. According to test results, the limiting oxygen index (LOI) value of PLA reduced from 29.2 to 28.0 and the UL-94 V rating changed from V2 to BC with the addition of 20 wt% plasticizer owing to the reduction in melt viscosity. The peak heat release rate (pHRR) and average heat release rate (avHRR) values increased steadily as the concentration of plasticizer increased due to the formation of a more porous residue structure stemming from the increased transportation rate of gases. In order to produce ductile flame retardant material, the plasticizer content was required to 20 wt% of HH. The highest LOI value (36.2) and UL-94 rating of V0 were achieved with the inclusion of 70 wt% HH in the presence of 20 wt% plasticizer. Improvement in impact resistance and reduction in tensile strength were observed as the added amount of plasticizer increased.  相似文献   
2.
Marine polysaccharides are believed to be promising wound-dressing nanomaterials because of their biocompatibility, antibacterial and hemostatic activity, and ability to easily shape into transparent films, hydrogels, and porous foams that can provide a moist micro-environment and adsorb exudates. Current efforts are firmly focused on the preparation of novel polysaccharide-derived nanomaterials functionalized with chemical objects to meet the mechanical and biological requirements of ideal wound healing systems. In this contribution, we investigated the characteristics of six different cellulose-filled chitosan transparent films as potential factors that could help to accelerate wound healing. Both microcrystalline and nano-sized cellulose, as well as native and phosphorylated cellulose, were used as fillers to simultaneously elucidate the roles of size and functionalization. The assessment of their influences on hemostatic properties indicated that the tested nanocomposites shorten clotting times by affecting both the extrinsic and intrinsic pathways of the blood coagulation system. We also showed that all biocomposites have antioxidant capacity. Moreover, the cytotoxicity and genotoxicity of the materials against two cell lines, human BJ fibroblasts and human KERTr keratinocytes, was investigated. The nature of the cellulose used as a filler was found to influence their cytotoxicity at a relatively low level. Potential mechanisms of cytotoxicity were also investigated; only one (phosphorylated microcellulose-filled chitosan films) of the compounds tested produced reactive oxygen species (ROS) to a small extent, and some films reduced the level of ROS, probably due to their antioxidant properties. The transmembrane mitochondrial potential was very slightly lowered. These biocompatible films showed no genotoxicity, and very importantly for wound healing, most of them significantly accelerated migration of both fibroblasts and keratinocytes.  相似文献   
3.
用高速混合-平板热压法制备了70%木纤维含量的木纤维-聚乳酸(WF-PLA)复合材料,研究了不同聚乳酸(PLA)对WF-PLA复合材料的耐水性、弯曲强度和弯曲模量、PLA分子量及热性能的影响。结果表明,PLA与木纤维复合后,弯曲模量明显增加,复合材料中PLA分子量和熔融温度明显下降;PLA性能对WF-PLA复合材料性能影响显著,WF-PLA复合材料中PLA分子量随PLA原料分子量下降而下降,高分子量PLA制备的WF-PLA复合材料耐水性更好,弯曲强度和弯曲模量更高;在PLA改性时,应避免引起PLA分子量下降。  相似文献   
4.
Foam materials are widely used in packaging and buildings for thermal insulation, sound absorption, shock absorption, and other functions. They are dominated by petroleum-based plastics, most of which, however, are not biodegradable nor fire-proofing, leading to severe plastic pollution and safety concerns. Here, a fire-proofing, thermally insulating, recyclable 3D graphite-cellulose nanofiber (G-CNF) foam fabricated from resource-abundant graphite and cellulose is reported. A freeze-drying-free and scalable ionic crosslinking method is developed to fabricate Cu2+ ionic crosslinked G-CNF (Cu-G-CNF) foam with a low energy consumption and cost. Moreover, the direct foam formation strategy enables local foam manufacturing to fulfil the local demand. The ionic crosslinked G-CNF foam demonstrates excellent water stability (the foam can maintain mechanical robustness even in wet state and recover after being dried in air without deformation), fire resistance (41.7 kW m−2 vs 214.3 kW m−2 in the peak value of heat release rate) and a low thermal conductivity (0.05 W/(mK)), without compromising the recyclability, degradability, and mechanical performance of the composite foam. The demonstrated 3D G-CNF foam can potentially replace the commercial plastic-based foam materials, representing a sustainable solution against the “white pollution”.  相似文献   
5.
为进一步提高骨修复材料的骨诱导性能,引入了BaTiO_3压电涂层。首先,通过等离子喷涂法在Ti基体上制备羟基磷灰石(HA)、Ti-HA和Ti-HA-BaTiO_3这3种生物涂层;然后,采用正交试验设计优化了喷涂工艺参数,用SEM/EDS对涂层的形貌和成分进行了表征,并通过划痕试验测试了涂层与基体的结合强度;最后,进行了细胞培养试验,用CCK-8法对细胞毒性进行了评价,并在SEM下观察了细胞的粘附形态。结果显示:细胞带有伪足,呈梭形和不规则多边形,且粘附在Ti-HA-BaTiO_3复合涂层表面;细胞伸展形态良好,涂层的细胞毒性等级不高于1级。可见,Ti-HA-BaTiO_3复合材料可以作为临床植入材料应用。  相似文献   
6.
Poly l -Lactide (PLLA) composites with short flax fibers (from 0 to 10 wt/wt%) with close to maximum theoretical stiffness are prepared by melt-compounding and injection-molding followed by a two-step isothermal crystallization protocol that fully separates the nucleation and growth stages (Tammann). The use of fast chip scanning calorimetry for thermal characterization avoids the complicating issues of crystal reorganization during the cooling and heating steps between the isothermal stages. Flax fibers are very efficient and selective nucleating agents of PLLA favoring the ordered α form. The resulting morphology exhibits trans-crystallization on the fibers surface, predominantly at fiber defects, with a clear reduction of crystal size and a very strong fiber matrix cohesion. Efficient nucleation further leads to a large reduction of the overall crystallization time. Avrami analysis evidences a reduction of crystal growth dimensionality, consistent with both optical and scanning electron microscopy. The high modulus of the composites is unambiguously related to the strong orientation of the fibers in the tensile direction, to their high aspect ratio and to the excellent matrix-fibers cohesion. On the other hand, the tensile strength and hardness appear isotropic within experimental uncertainty and are unfavorably influenced by the presence of the fibers and by the two-stage annealing.  相似文献   
7.
生物复合材料由于成本低、可再生和对环境友好的特性,在建筑中获得了新颖又广泛的应用。通过一对一的双曲面、参数化设计形成的分段式壳体,来展示生物材料在承重结构中的应用。这种结构由轻质的单向弯曲木和生物复合材料组成,其中,木质纤维基核心由长木纤维以单板形式加固。进一步探讨了高 3.6 m,面积 55 m2 的展馆的建造技术以及生物复合材料应用的可能性。  相似文献   
8.
A binary blend of polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT), along with algae in their respective composites, were successfully produced using a melt extrusion process. The produced in-house coupling agent was used to enhance interfacial adhesion and algae dispersion. The influence of algae content incorporated into the compatibilized binary blend was thoroughly investigated, focusing on the bio-composites morphology, mechanical, and thermal properties. The addition of PLA-g-MA to the binary blend led to notable improvements in the storage modulus, mechanical strength, and thermal properties of the binary blend. Subsequently, the introduction of algae into the compatibilized binary blend further augmented the storage modulus, with an optimum algae concentration of 10 wt%. However, higher algae content led to decreased tensile strength, elongation at break, and impact resilience. The optimal balance of these properties was achieved at an optimal loading of 5–10 wt% of algae into the compatibilized binary blend. The thermal stability of the bio-composites was notably impacted by algae concentration, with the 10 wt% algae bio-composite exhibiting increased thermal stability. Increasing algae content correlated with decreased bio-composite crystallinity. These findings underscore the potential of optimized biobased algae composites for achieving desired mechanical and thermal properties, contributing to the development of sustainable and eco-friendly polymer bio-composites.  相似文献   
9.
麦草纤维复合材料的制备和性能研究   总被引:2,自引:2,他引:0  
麦草原料经碱液喷淋处理后,采用双螺杆挤出机对其进行纤维疏解。以疏解后麦草为原料,利用其溶出木素,并辅以天然淀粉来制备复合材料。研究NaOH用量及淀粉添加量、添加方式对材料力学性能的影响。  相似文献   
10.
采用原位合成与溶液共混的方法,制备了纳米羟基磷灰石(HA)-短切碳纤维(Cf)/聚甲基丙烯酸甲酯(PMMA)生物复合材料, 研究了HA对HA-Cf/PMMA复合材料的力学性能和微观结构的影响. 采用万能材料试验机测试了HA-Cf/PMMA复合材料的力学性能,用X射线衍射仪(XRD)、透射电镜(TEM)、场发射扫描电子显微镜(FESEM)和红外吸收光谱仪(FT-IR)分析测试手段对材料的组成结构及断面的微观形貌等进行了测试和表征. 结果表明,采用卵磷脂改性后的HA纳米片与PMMA基体的界面结合性能得到了有效改善,显著提高了复合材料的力学性能;随着HA含量的增加,HA-Cf/PMMA复合材料的弯曲强度、拉伸强度、压缩强度、弯曲模量和拉伸模量均呈先增大后减小的趋势. 当HA含量在8wt%时,复合材料的力学性能最佳.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号