首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107939篇
  免费   25642篇
  国内免费   3707篇
电工技术   4023篇
综合类   5986篇
化学工业   28858篇
金属工艺   7597篇
机械仪表   6537篇
建筑科学   10998篇
矿业工程   3157篇
能源动力   3095篇
轻工业   10368篇
水利工程   2913篇
石油天然气   2947篇
武器工业   468篇
无线电   10999篇
一般工业技术   25585篇
冶金工业   3984篇
原子能技术   451篇
自动化技术   9322篇
  2024年   219篇
  2023年   710篇
  2022年   2073篇
  2021年   2490篇
  2020年   4455篇
  2019年   6891篇
  2018年   6323篇
  2017年   7203篇
  2016年   7220篇
  2015年   7110篇
  2014年   8036篇
  2013年   8584篇
  2012年   8004篇
  2011年   8004篇
  2010年   6320篇
  2009年   6034篇
  2008年   5864篇
  2007年   6263篇
  2006年   5758篇
  2005年   4812篇
  2004年   4255篇
  2003年   3835篇
  2002年   3534篇
  2001年   2996篇
  2000年   2711篇
  1999年   1873篇
  1998年   956篇
  1997年   847篇
  1996年   734篇
  1995年   583篇
  1994年   508篇
  1993年   414篇
  1992年   351篇
  1991年   260篇
  1990年   218篇
  1989年   204篇
  1988年   146篇
  1987年   105篇
  1986年   70篇
  1985年   51篇
  1984年   60篇
  1983年   34篇
  1982年   39篇
  1981年   12篇
  1980年   25篇
  1979年   23篇
  1964年   10篇
  1961年   6篇
  1959年   9篇
  1955年   11篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
The number of clinical trials evaluating adipose-derived mesenchymal stem cells (AD-MSCs), platelet-rich plasma (PRP), and biomaterials efficacy in regenerative plastic surgery has exponentially increased during the last ten years. AD-MSCs are easily accessible from various fat depots and show intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. AD-MSCs have been used in the treatment of soft tissue defects and chronic wounds, employed in conjunction with a fat grafting technique or with dermal substitute scaffolds and platelet-rich plasma. In this systematic review, an overview of the current knowledge on this topic has been provided, based on existing studies and the authors’ experience. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, PRP, and biomaterials used in soft tissue defects and chronic wounds. Of the 2136 articles initially identified, 422 articles focusing on regenerative strategies in wound healing were selected and, consequently, only 278 articles apparently related to AD-MSC, PRP, and biomaterials were initially assessed for eligibility. Of these, 85 articles were excluded as pre-clinical, experimental, and in vitro studies. For the above-mentioned reasons, 193 articles were selected; of this amount, 121 letters, expert opinions, commentary, and editorials were removed. The remaining 72 articles, strictly regarding the use of AD-MSCs, PRP, and biomaterials in chronic skin wounds and soft tissue defects, were analyzed. The studies included had to match predetermined criteria according to the patients, intervention, comparator, outcomes, and study design (PICOS) approach. The information analyzed highlights the safety and efficacy of AD-MSCs, PRP, and biomaterials on soft tissue defects and chronic wounds, without major side effects.  相似文献   
2.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
3.
This study presents an improved mathematical model to analyse the stress wave propagation in adhesively bonded functionally graded (FG) circular cylinders (butt joint) under an axial impulsive load. The volume fractions of the material constituents in the upper and lower cylinders were functionally tailored through the thickness of each cylinder using a power-law. The effective material properties of both cylinders, which are made of aluminum (Al) and silicon carbide (SiC), at any point were predicted by using the Mori–Tanaka homogenization scheme. In this improved model, the governing equations of the wave propagation include the spatial derivatives of local mechanical properties and were discretized by means of the finite difference method. The influence of these spatial derivatives and the compositional gradient exponent on the displacement and stress distributions of the joint was investigated. The material composition variations of both cylinders affected the displacement and stress fields whereas the compositional gradient exponent had a minor effect. The stress concentrations were alleviated in time, the displacement and stress distributions/variations around/along the upper and lower cylinder-adhesive interfaces were significantly affected by the adhesive layer. The spatial derivatives also affected the temporal histories of the displacement and stress components evaluated at the selected critical points of the upper cylinder, adhesive layer and lower cylinder. The consideration of the spatial local material derivatives provided a more accurate mathematical model of wave propagations through the graded layered structures.  相似文献   
4.
Water contamination is a global challenge impacting both the environment and human health with significant economic and social costs. The growing scarcity of usable water resources requires effective treatment of wastewater. In this context, developing cheaper, safer and more efficient wastewater treatment technologies are the need of the hour. One promising approach that several studies have reported success has been the usage of nanomaterials in water and waste water management. The rapid progress of research in nanomaterial sciences has shown their growing potential; however, there has not been a great amount of information available on their implementation. This review focuses on developments in nanotechnology that hold strong potential for wastewater treatment. The review covers key techniques in nanomaterial‐based water treatments including adsorption, filtration and photocatalysis with recent examples showing how to improve their properties and efficiencies according to the need.  相似文献   
5.
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.  相似文献   
6.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
7.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
8.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
9.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
10.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号