首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
化学工业   1篇
一般工业技术   6篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2014年   1篇
  2006年   1篇
  1979年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Al–Zn–Mg–Cu aluminum alloy contain 0.3% Zr and 4% Ni was processed by traditional hot and cold rolling with a total reduction from 0  to  80%. The relationship between superplastic behavior and reduction of cold deformation and casting cooling rate was analyzed. It is shown that the decrease in the reduction of cold rolling do not significantly influence on flow stress and elongation. Decrease in casting cooling rate leads to insignificantly decrease in superplastic indicators. Alloy exhibits advanced superplasticity: the elongation of 400–800% at the strain rates of (5 × 10–3–1 × 10–1) s–1.  相似文献   
2.
An extensive study was carried out to investigate the effect of cooling rate after hot forging process and normalization step on the hardness, strength and impact toughness and microstructure of P285NH steel. Understanding of the combined effect of cooling rate and normalization on the mechanical and microstructural properties of the steel would help to select conditions required to achieve optimum mechanical properties. The results indicated that the microstructures of all forging and cooling conditions were dominated by ferrite and pearlite phases with different morphologies and grain sizes according to various cooling rates. Conveyor cooling led to a formation of relatively fine acicular ferrite and pearlite grains in comparison to batch cooling which presented coarse polygonal ferrite with pearlite. Based on the data fluctuation of Charpy tests, the normal distribution provided a statistical analysis method for assessing the reliability. Through the statistical analysis of the distribution function, it can be concluded that normalization step is necessary for higher reliability. Both batch cooling and conveyor cooling did not give the required reliability level for safety components due to heterogeneities in the microstructure.  相似文献   
3.
For quenching of age hardenable aluminium alloys today predominantly aqueous quenching media are used, which can lead due to the Leidenfrost phenomenon to a non‐uniform cooling of the parts and thus to distortion. Particularly at thin‐walled or complex shaped parts local plastic deformations can occur by the uneven thermal stresses. In relation to the conventional quenching procedures in aqueous media, gas quenching exhibits a number of technological, ecological, and economical advantages. The quenching intensity can be adjusted by the variable parameters gas pressure and gas velocity as well as the kind of gas and thus can be adapted to the requirements of the part. The distortion behaviour of serial production aluminium parts was researched after high‐pressure gas quenching with nitrogen 10 bar and after water quenching. Aluminium castings and forgings are considered as interesting applications of gas quenching, because of their near‐net shape before age hardening. Cost savings would be possible, because of reduced distortion and therefore less reworking.  相似文献   
4.
The effect of intermetallic compound layer between Sn‐4.0 Ag‐0.5Cu solder bump and electroless nickel/immersion silver (ENImAg) surface finish under different cooling rate during multiple reflow condition was investigated. The results show that the interfacial (Cu, Ni)6Sn5 intermetallic compound were formed at the early stage after the first reflow process. After multiple reflow processes, both (Cu, Ni)6Sn5 and (Ni, Cu)3Sn4 appeared as needle‐shaped at interface due to the amount of copper concentration into a solder balls. The spalling intermetallic compound of (Cu, Ni)6Sn5 was spotted in the solder which was caused by the formation of needle‐shaped from the gaps of (Cu, Ni)6Sn5. The intermetallic compound thickness and grain sizes became thicker and coarser with increasing reflow time, respectively. The results also perceived that the cooling rate condition can influence the growth of intermetallic compound formation. Faster cooling rate produced thinner intermetallic layer as well as smaller grain sizes compared to slow cooling rate. Hence, the cooling rate is a necessary parameter in the solder reflow process because it has an impact on the microstructure of morphology and intermetallic growth.  相似文献   
5.
6.
In the present investigation, steel plates were joined at different tool traversing speed by friction stir welding keeping other parameters same. Microstructural characterization was carried out with optical and scanning electron microscopes. At weld nugget pearlite and bainite were present within ferrite matrix. Thermo‐mechanically and heat affected zones microstructure consisted of pearlite and ferrite. Second phase area fraction and matrix grain size at different regions were varied depending on welding parameters. Weld nugget exhibited substantial improvement in microhardness with respect to base metal. In this respect heat affected zone revealed minimum microhardness and was below base metal value. Tensile tests were carried out on standard and miniature specimens in scanning electron microscope. Highest joint efficiency to the tune of ~82 % and ~120 % of that of base metal obtained for standard and miniature specimens, respectively machined from weld fabricated at lowest welding speed. With increment in welding speed assembly strength was reduced for both types of specimens. Standard specimens failed from heat affected zone and miniature specimens failed through centre of weld nugget. Apart from matrix grain size and second phase area fraction, precipitation of microalloyed carbide / carbonitride was responsible for altering the joint strength.  相似文献   
7.
Microstructural characterization of the bainite in a ferritic–pearlitic forged crankshaft was carefully investigated. A Gleeble thermo‐mechanical simulator as well as a high resolution dilatometer were also used to analyze the effect of cooling rate on the bainite formation and the bainite transformation mechanism in steels with different austenite grain sizes. Results show that the fine structure of the bainite mainly consists of bainitic ferrite and martensite. No segregations are found where bainite forms. Bainite tends to form in the slower cooled inner part of the crankshaft with an austenite grain size exceeding 100 μm. The formation of bainite is mainly affected by the austenite grain size as well as the cooling rate in the crankshaft studied. As the austenite grain size increases, ferrite start, pearlite finish and bainite finish temperatures are decreased. More bainite forms when bainite finish temperature decreases. The critical cooling rate of bainite transformation is increased from 0.34 °C?s‐1 to 0.44 °C?s‐1, if the maximum austenite grain size is refined from 216 μm to 100 μm. For ferritic–pearlitic crankshafts, or other bulky products, the elimination of bainite can be achieved through austenite grain refinement.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号