首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   56篇
  国内免费   4篇
电工技术   5篇
化学工业   81篇
金属工艺   1篇
机械仪表   4篇
建筑科学   10篇
轻工业   7篇
水利工程   4篇
无线电   42篇
一般工业技术   67篇
冶金工业   5篇
原子能技术   10篇
自动化技术   13篇
  2023年   7篇
  2022年   22篇
  2021年   47篇
  2020年   14篇
  2019年   13篇
  2018年   16篇
  2017年   12篇
  2016年   21篇
  2015年   12篇
  2014年   15篇
  2013年   7篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   9篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
1.
The International Society for the Study of Vascular Anomalies (ISSVA) provides a classification for vascular anomalies that enables specialists to unambiguously classify diagnoses. This classification is only available in PDF format and is not machine-readable, nor does it provide unique identifiers that allow for structured registration. In this paper, we describe the process of transforming the ISSVA classification into an ontology. We also describe the structure of this ontology, as well as two applications of the ontology using examples from the domain of rare disease research. We used the expertise of an ontology expert and clinician during the development process. We semi-automatically added mappings to relevant external ontologies using automated ontology matching systems and manual assessment by experts. The ISSVA ontology should contribute to making data for vascular anomaly research more Findable, Accessible, Interoperable, and Reusable (FAIR). The ontology is available at https://bioportal.bioontology.org/ontologies/ISSVA.  相似文献   
2.
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial–mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal–epithelial transition, MET), now collectively called epithelial–mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial–mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.  相似文献   
3.
Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.  相似文献   
4.
Neoplasms derived from follicular tissue are extremely rare. Clinically, they are reported as non-symptomatic, slow-growing nodules. These lesions are mainly benign, but the malignant type can occur. Mainly middle-aged people (50–60 years of age) are affected. These carcinomas are mainly localized on the head and neck or torso. They can be locally aggressive and infiltrate surrounding tissue and metastasize to regional lymph nodes. In the minority of cases, distant metastases are diagnosed. Quick and relevant diagnosis is the basis of a treatment for all types of tumors. The patient’s life expectancy depends on multiple prognostic factors, including the primary tumor size and its mitotic count. Patients should be referred to a specialized skin cancer center to receive optimal multidisciplinary treatment. This article tries to summarize all the information that is currently available about pathogenesis, diagnosis, and treatment methods of follicular tumors.  相似文献   
5.
Although there are many patients with brain tumors worldwide, there are numerous difficulties in overcoming brain tumors. Among brain tumors, glioblastoma, with a 5-year survival rate of 5.1%, is the most malignant. In addition to surgical operations, chemotherapy and radiotherapy are generally performed, but the patients have very limited options. Temozolomide is the most commonly prescribed drug for patients with glioblastoma. However, it is difficult to completely remove the tumor with this drug alone. Therefore, it is necessary to discuss the potential of anticancer drugs, other than temozolomide, against glioblastomas. Since the discovery of cisplatin, platinum-based drugs have become one of the leading chemotherapeutic drugs. Although many studies have reported the efficacy of platinum-based anticancer drugs against various carcinomas, studies on their effectiveness against brain tumors are insufficient. In this review, we elucidated the anticancer effects and advantages of platinum-based drugs used in brain tumors. In addition, the cases and limitations of the clinical application of platinum-based drugs are summarized. As a solution to overcome these obstacles, we emphasized the potential of a novel approach to increase the effectiveness of platinum-based drugs.  相似文献   
6.
To overcome high toxicity, low bioavailability and poor water solubility of chemotherapeutics, a variety of drug carriers have been designed. However, most carriers are severely limited by low drug loading capacity and adverse side effects. Here, a new type of metal-drug nanoparticles (MDNs) was designed and synthesized. The MDNs self-assembled with Fe(III) ions and drug molecules through coordination, resulting in nanoparticles with high drug loading. To assist systemic delivery and prolong circulation time, the obtained MDNs were camouflaged with red blood cell (RBCs) membranes (RBCs@Fe-DOX MDNs) to improve their stability and dispersity. The RBCs@Fe-DOX MDNs presented pH-responsive release functionalities, resulting in drug release accelerated in acidic tumor microenvironments. The outstanding in vitro and in vivo antitumor therapeutic outcome was realized by RBCs@Fe-DOX MDNs. This study provides an innovative design guideline for chemotherapy and demonstrates the great capacity of nanomaterials in anticancer treatments.  相似文献   
7.
在乳腺肿瘤识别优化的研究中,传统的识别方法容易漏诊.为提高乳腺肿瘤识别准确率,提出基于粒子群优化(Particle Swarm Optimization,PSO)参数的支持向量机(Support Vector Machine,SVM)辅助诊断方法.首先采用PSO选择最佳的SVM惩罚系数c,核函数参数γ;然后,利用最佳参数c和γy训练SVM;再利用PSO-SVM实现乳腺肿瘤分类识别,进而实现辅助诊断.将PSO-SVM乳腺肿瘤识别方法的仿真结果与LVQ神经网络识别方法、BP神经网络识别方法的结果做比对分析,表明PSO-SVM具有较高的识别准确率和较低的假阴性率.PSO-SVM乳腺肿瘤辅助诊断,可以提供决策支持,辅助医生尽可能地减少和避免采用传统的细针穿刺细胞病理学检查方法诊断乳腺肿瘤时的漏诊、误诊情况,具有非常重要的价值和意义.  相似文献   
8.
As a less O2-dependent photodynamic therapy (PDT), type I PDT is an effective approach to overcome the hypoxia-induced low efficiency against solid tumors. However, the commonly used metal-involved agents suffer from the long-term biosafety concern. Herein, a metal-free type I photosensitizer, N-doped carbon dots/mesoporous silica nanoparticles (NCDs/MSN, ≈40 nm) nanohybrid with peroxidase (POD)-like activity for synergistic PDT and enzyme-activity treatment, is developed on gram scale via a facile one-pot strategy through mixing carbon source and silica precursor with the assistance of template. Benefiting from the narrow bandgap (1.92 eV) and good charge separation capacity of NCDs/MSN, upon 640 nm light irradiation, the excited electrons in the conduction band can effectively generate O2•− by reduction of dissolved O2 via a one-electron transfer process even under hypoxic conditions, inducing apoptosis of tumor cells. Moreover, the photoinduced O2•− can partially transform into more toxic OH through a two-electron reduction. Moreover, the POD-like activity of NCDs/MSN can catalyze the endogenous H2O2 to OH in the tumor microenvironment, further synergistically ablating 4T1 tumor cells. Therefore, a mass production way to synthesize a novel metal-free type I photosensitizer with enzyme-mimic activity for synergistic treatment of hypoxic tumors is provided, which exhibits promising clinical translation prospects.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号