首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6315篇
  免费   1257篇
  国内免费   306篇
电工技术   1023篇
综合类   314篇
化学工业   1900篇
金属工艺   449篇
机械仪表   172篇
建筑科学   114篇
矿业工程   200篇
能源动力   431篇
轻工业   90篇
水利工程   12篇
石油天然气   126篇
武器工业   25篇
无线电   728篇
一般工业技术   1663篇
冶金工业   384篇
原子能技术   178篇
自动化技术   69篇
  2024年   45篇
  2023年   246篇
  2022年   209篇
  2021年   331篇
  2020年   425篇
  2019年   370篇
  2018年   298篇
  2017年   368篇
  2016年   416篇
  2015年   316篇
  2014年   410篇
  2013年   458篇
  2012年   435篇
  2011年   446篇
  2010年   303篇
  2009年   297篇
  2008年   224篇
  2007年   340篇
  2006年   325篇
  2005年   278篇
  2004年   253篇
  2003年   204篇
  2002年   177篇
  2001年   131篇
  2000年   121篇
  1999年   78篇
  1998年   60篇
  1997年   45篇
  1996年   45篇
  1995年   29篇
  1994年   30篇
  1993年   32篇
  1992年   25篇
  1991年   25篇
  1990年   12篇
  1989年   18篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   12篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1959年   1篇
  1951年   3篇
排序方式: 共有7878条查询结果,搜索用时 15 毫秒
1.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry  相似文献   
2.
Enriching the micronutrients, selenium (Se) and lithium (Li), in grapes to improve their nutraceutical properties were implemented by foliar application of organic fertiliser rich in Se and Li onto five grape cultivars. The effects of this biofortification on vine vigour, fruit quality, overall micronutrients and phenolic compounds also were investigated. Agronomic biofortification was found greatly increased the Se and Li content in the whole grape by multiple times, meanwhile it did not significantly affect the vine vigour and fruit quality of grapes. However, the biofortification did impact the Ionome (including all the mineral nutrients and trace elements) and phenolic compounds in grapes and this varied among cultivars. This study demonstrated foliar spray of organic Se/Li fertiliser was a very effective strategy to biofortify these micronutrients in grape berries, particularly in the skin, and therefore might be a promising strategy to increase the consumption and awareness of these grapes.  相似文献   
3.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
4.
Li7La3Zr2O12-based garnet-type solid electrolytes are promising candidates for use in all-solid-state lithium batteries (ASSLBs). However, their potential in large-scale commercial applications is largely hindered by the time/energy-consuming and lithium-wasting synthetic method which typically needs a long-duration high temperature solid state reaction process. Herein we invent a fast preparation route that involves a short-period thermal reaction (1100 °C for 10 min) in laboratory muffle furnaces following by conventional hot pressing technique to get almost fully dense (Al, Ga, Ta, Nb)-doped garnet-type electrolytes with high phase purity (>99.9 %). The large and compact grains, low porosity and high phase purities of garnet ceramic electrolytes synthesized in this study ensure superior electrochemical performance. Particularly, Ga-doped cubic Li7La3Zr2O12 shows extremely low Ea values (0.17?0.18 eV) and record-high lithium ionic conductivities (>2 × 10?3 S cm-1 at 25 °C).  相似文献   
5.
Through the simple precipitation of palygorskite (PGS) by zinc borate (ZB) (to make PGS@ZB) and the decoration of PGS@ZB by dodecylamine (N), a novel organic‐inorganic@inorganic hybrid flame retardant of PGS@ZB‐N was prepared and was incorporated with ethylene vinyl acetate copolymer (EVA) to improve its flame retardance. The structure and morphology of PGS@ZB‐N were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM), and it was confirmed that the PGS@ZB‐N hybrid had been successfully prepared. The flame retardancy and burning behavior of EVA/PGS@ZB‐N/EG (EG = expandable graphite) composite were studied through thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 (by the vertical burning test), and cone calorimeter test (CCT) characterizations. The prepared EVA/PGS@ZB‐N/EG composite obtained an LOI value of 41.2% with the addition of 30 wt% PGS@ZB‐N/EG. It was found that EVA/PGS@ZB‐N/EG was protected through a gas phase and condensed phase alternating synergistic effect mechanism.  相似文献   
6.
The polymer electrolyte based solid-state lithium metal batteries are the promising candidate for the high-energy electrochemical energy storage with high safety and stability. Moreover, the intrinsic properties of polymer electrolytes and interface contact between electrolyte and electrodes have played critical roles for determining the comprehensive performances of solid-state lithium metal batteries. In this review, the development of polymer electrolytes with the design strategies by functional units adjustments are firstly discussed. Then the interfaces between polymer electrolyte and cathode/anode, including the interface issues, remedy strategies for stabilizing the interface contact and reducing resistances, and the in-situ polymerization method for enhancing the compatibilities and assembling the batteries with favorable performances, have been introduced. Lastly, the perspectives on developing polymer electrolytes by functional units adjustment, and improving interface contact and stability by effective strategies for solid-state lithium metal batteries have been provided.  相似文献   
7.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
8.
《Ceramics International》2020,46(7):8839-8844
In this work, B4C-covered zirconia-toughened alumina (ZTA) particles are prepared and oxidised at 1050 °C for different times (0, 2, 4, and 8 h) in air. The X-ray diffraction and electron probe micro-analysis results show that the covering layer is mainly composed of oxide B2O3 intermetallics, residual B4C particles, and Al18B4O33 whiskers. The scanning electron microscopy results show that the growth of Al18B4O33 whiskers on the ZTA particles enhances with increasing heat preservation time; the optimum holding time is determined to be 8 h Al2O3 in the ZTA particles diffuse into the covering layer and combine with B2O3 to form Al18B4O33 whiskers; the Al18B4O33 whiskers grow via the liquid-solid mechanism.  相似文献   
9.
Li4SiO4 sorbents for high-temperature CO2 removal have drawn extensive attention owing to their potential application in carbon capture and storage (CCS). The major challenge in the application lies in the poor CO2 capture performance under realistic conditions of low CO2 concentrations, owing to the dense structure and poor porosity. In this work, Li4SiO4 sorbents were prepared with porous micromorphologies and large contact areas using a variety of organometallic Li-precursors, achieving fast CO2 sorption kinetics, high capacity and excellent cyclic stability at a low CO2 concentration (15?vol%). It was found that a high conversion of ~?74% was maintained for pure Li4SiO4 even after 100 sorption/desorption cycles. Moreover, by doping with Na2CO3 to reduce the CO2 diffusion resistance, the conversion of the sorbent was further enhanced to 93.2%. The enhancement mechanism of alkali carbonate have been proven here to be ascribed to the formation of the eutectic melt of Li/Na carbonates, the existence and function of which has been confirmed in this study.  相似文献   
10.
Heat and mass transfer in a falling film vertical in-tube absorber was studied experimentally with LiBr aqueous solution. The presented results include the effect of solution flow rate, solution subcooling and cooling water temperature on the absorption in a smooth copper tube 16.05 mm I.D. and 400 mm long. The experimental data in the previous report for a 1200-mm-long tube was also re-examined and compared. It was demonstrated by the observation of the flow in the tube that the break down of the liquid film into rivulets leads to deterioration of heat and mass transfer at lower film Reynolds number or in longer tubes. An attempt to evaluate physically acceptable heat and mass transfer coefficients that are defined with estimated temperature and concentration at the vapor–liquid interface was also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号