首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98441篇
  免费   12269篇
  国内免费   5432篇
电工技术   6170篇
技术理论   2篇
综合类   7278篇
化学工业   23255篇
金属工艺   11574篇
机械仪表   5275篇
建筑科学   7588篇
矿业工程   3862篇
能源动力   2641篇
轻工业   5601篇
水利工程   985篇
石油天然气   3590篇
武器工业   1333篇
无线电   7740篇
一般工业技术   20495篇
冶金工业   5301篇
原子能技术   853篇
自动化技术   2599篇
  2024年   442篇
  2023年   2165篇
  2022年   2733篇
  2021年   3718篇
  2020年   3862篇
  2019年   3578篇
  2018年   3176篇
  2017年   3969篇
  2016年   4023篇
  2015年   3988篇
  2014年   5550篇
  2013年   5792篇
  2012年   6780篇
  2011年   7014篇
  2010年   5218篇
  2009年   5609篇
  2008年   4699篇
  2007年   6304篇
  2006年   5971篇
  2005年   5176篇
  2004年   4128篇
  2003年   3953篇
  2002年   3115篇
  2001年   2707篇
  2000年   2428篇
  1999年   1881篇
  1998年   1539篇
  1997年   1331篇
  1996年   1102篇
  1995年   882篇
  1994年   782篇
  1993年   613篇
  1992年   434篇
  1991年   340篇
  1990年   242篇
  1989年   214篇
  1988年   129篇
  1987年   98篇
  1986年   57篇
  1985年   82篇
  1984年   75篇
  1983年   58篇
  1982年   67篇
  1981年   12篇
  1980年   28篇
  1979年   18篇
  1977年   6篇
  1975年   7篇
  1974年   6篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
2.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
3.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
4.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
5.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
6.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
7.
In this study, AA7075 aluminum matrix composites reinforced with the combination of SiC, Al2O3, and B4C particles were fabricated by the liquid metal infiltration method. The effects of the relative ratio of B4C and Al2O3 particles on the microstructural, wear, and corrosion features of the composite samples were analyzed using XRD, light metal microscopy, SEM, EDS, Brinell hardness, ball-on-disc type tribometer, and potentiodynamic polarization devices. It was determined that infiltration occurred more successfully, and homogenously distributed particles with reduced porosity were obtained as the amount of Al2O3 increased. Worn surface studies revealed that the specimens were predominantly worn by abrasion and adhesion. The increase in B4C/Al2O3 ratio caused a decrease in the hardness and wear strength, whereas it increased the corrosion resistance.  相似文献   
8.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
9.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
10.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号