首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   36篇
化学工业   17篇
建筑科学   18篇
一般工业技术   166篇
  2023年   14篇
  2021年   13篇
  2020年   23篇
  2019年   27篇
  2018年   13篇
  2017年   10篇
  2016年   4篇
  2015年   7篇
  2014年   11篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
1.
This research aims to develop a method for the amalgamation of graphene nanoplatelets in glass/epoxy composites. The poor interface bonding between the fiber and matrix is critical and hinders the full performance of the composites. Glass fabric and epoxy were used as reinforcement and matrix in the composite, respectively. Graphene nanoplatelets were utilized as an additional nano-materials filler for the composites. Glass/graphene/epoxy and glass/epoxy composites were fabricated via vacuum infusion molding. The new method of applying graphene nanoplatelets as secondary reinforcement in the composite was developed based on proper functionalization in the sonication process. The physical, tensile, flexural, and short beam interlaminar properties of fabricated composites were examined to analyze the method's effectiveness. The results showed that density decreased by around 5 %; however, thickness increased by around 34 % after introducing graphene nanoplatelets into the composites. The tensile strength and modulus of the composites declined by approximately 19 %, on the other hand, flexural strength and modulus increased by around 63.3 % and 8.3 %, respectively, after the addition of graphene nanoplatelets into the composites. Moreover, interlaminar shear strength of the composite was enhanced by approximately 50 %.  相似文献   
2.
Developing light weight polymer based composites dispersed with novel reinforcements which can function well in the presence of aggressive environments is an active research field in the materials engineering. Hence, in the current work, halloysite nanotubes (1 %, 2 %, 4 %, 6 %, 8 % and 10 % by weight) were reinforced into acrylonitrile butadiene styrene/polycarbonate blend and the role of reinforcing phases on the mechanical performance under aggressive environmental conditions has been evaluated. Hardness was measured as gradually increased in the composites with the increased content of the reinforcements. Impact strength of the composites was observed as increased in the composites up to 4 % reinforcement and further decreased. Increased strength was measured for the composite up to 2 % reinforcement. Ductility of the composites was decreased as reflected form the decreased % of elongation with the higher fraction of reinforcements due to induced brittleness. The composites were exposed to diluted sulfuric acid for 3 h and 6 h at 60 °C and then subjected to tensile loading. With the increased time of exposure, composites with 1 % and 2 % reinforcement exhibited relatively better performance.  相似文献   
3.
Advanced multiphase steels offer a great potential for bodies‐in‐white through their combination of formability and achievable component strength levels. They are first choice for strength and crash‐relevant parts of challenging geometry. The intensive development of high‐strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels.  相似文献   
4.
5.
Severe plastic deformation improves the strength of a metal by strain hardening. Of the various severe plastic deformation processes, equal channel angular pressing proves to be the right candidate for bulk metal processing. Extensive works were carried out on equal channel angular pressing with channel angle ranging from 90° to 120 ° with or without back pressure on the exit channel. Numerical analyses suggest that reducing the channel angle below 90° would enhance the magnitude of strain imparted and, with prediction of a lesser strain homogeneity in such cases. Hence an acute angled equal channel angular pressing die with a back‐pressure notch sunken into the roof of the exit channel was designed, fabricated and was used for processing pure aluminium. Various mechanical properties of the processed materials were tested and acute angle processing imparted superior tensile strength to the work pieces in a single pass that would require several passes in a conventional equal channel angular pressing die. Substantial improvement in grain refinement and torsional properties was identified.  相似文献   
6.
Salt spray corrosion test was carried out on 6061 aluminum alloy, and quasi-static tensile test at room temperature was carried out on the sample with universal testing machine. The effect of salt spray corrosion on the mechanical properties of 6061 aluminum alloy was studied by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and electrochemistry. The corrosion rate of 6061 aluminum alloy was quantitatively characterized by different corrosion parameters. It was found that local corrosion of 6061 aluminum alloy occurred in salt spray environment, mainly pitting corrosion and intergranular corrosion. With the increase of corrosion time, the polarization resistance of 6061 aluminum alloy decreases, and the corrosion rate significantly increases. The average corrosion rate and the maximum corrosion rate of 6061 aluminum alloy were characterized by corrosion weight loss and corrosion pit depth. And they can be transformed into each other. The mechanical properties of 6061 aluminum alloy were mainly affected by the depth of corrosion pit. With the increase of corrosion time, the tensile strength and fracture strain decreased, resulting in poor plasticity of the sample. At the same time, the change of elongation of 6061 aluminum alloy can be accurately predicted by the depth of corrosion pit.  相似文献   
7.
Powder metallurgical TiAl based alloy and Ti–6Al–4V (TC4) alloy were diffusion bonded at 915 °C for 1 h under a pressure of 80 MPa. Single Ti‐based amorphous or Ni‐based amorphous foil was utilized as an interlayer during diffusion bonding process. The tensile mechanical properties of the diffusion bonded joints between TiAl based alloy and TC4 alloy were tested. The fracture surface and microstructure characteristic of these joints were also observed carefully by scanning electron microscope. The TiAl based alloy with a fully lamellar microstructure is more suitable for diffusion bonding to TC4 alloy. Adding a Ti‐based amorphous interlayer is more conducive to the element diffusion, giving rise to the improvement in the mechanical properties of the diffusion bonded joints. Results also show that the diffusion bonded joints form a metallurgical bond and fracture in a brittle manner.  相似文献   
8.
9.
10.
Compression tests of deformation and fracture behavior of wheat grains were carried out at different loading rates that varied from 0.02 to 0.11 mm s–1. The contact model originally developed for the spherical particles was adapted to describe the deformation and fracture behavior of elliptical wheat grains. The distributions of basic fracture parameters of wheat grains such as fracture force, fracture strength, fracture energy, and fracture displacement were fitted with normal distribution function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号