首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13735篇
  免费   1614篇
  国内免费   1148篇
电工技术   984篇
综合类   940篇
化学工业   767篇
金属工艺   1080篇
机械仪表   525篇
建筑科学   278篇
矿业工程   103篇
能源动力   85篇
轻工业   187篇
水利工程   42篇
石油天然气   114篇
武器工业   93篇
无线电   3223篇
一般工业技术   1729篇
冶金工业   2349篇
原子能技术   68篇
自动化技术   3930篇
  2024年   82篇
  2023年   291篇
  2022年   413篇
  2021年   501篇
  2020年   448篇
  2019年   332篇
  2018年   283篇
  2017年   383篇
  2016年   369篇
  2015年   421篇
  2014年   616篇
  2013年   732篇
  2012年   738篇
  2011年   1104篇
  2010年   837篇
  2009年   877篇
  2008年   901篇
  2007年   907篇
  2006年   874篇
  2005年   829篇
  2004年   749篇
  2003年   612篇
  2002年   550篇
  2001年   467篇
  2000年   309篇
  1999年   261篇
  1998年   229篇
  1997年   203篇
  1996年   196篇
  1995年   187篇
  1994年   142篇
  1993年   138篇
  1992年   94篇
  1991年   63篇
  1990年   72篇
  1989年   57篇
  1988年   51篇
  1987年   11篇
  1986年   16篇
  1985年   19篇
  1984年   14篇
  1983年   14篇
  1982年   9篇
  1979年   6篇
  1977年   15篇
  1976年   5篇
  1975年   5篇
  1973年   5篇
  1963年   5篇
  1961年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
死亡风险预测指根据病人临床体征监测数据来预测未来一段时间的死亡风险。对于ICU病患,通过死亡风险预测可以有针对性地对病人做出临床诊断,以及合理安排有限的医疗资源。基于临床使用的MEWS和Glasgow昏迷评分量表,针对ICU病人临床监测的17项生理参数,提出一种基于多通道的ICU脑血管疾病死亡风险预测模型。引入多通道概念应用于BiLSTM模型,用于突出每个生理参数对死亡风险预测的作用。采用Attention机制用于提高模型预测精度。实验数据来自MIMIC [Ⅲ]数据库,从中提取3?080位脑血管疾病患者的16?260条记录用于此次研究,除了六组超参数实验之外,将所提模型与LSTM、Multichannel-BiLSTM、逻辑回归(logistic regression)和支持向量机(support vector machine, SVM)四种模型进行了对比分析,准确率Accuracy、灵敏度Sensitive、特异性Specificity、AUC-ROC和AUC-PRC作为评价指标,实验结果表明,所提模型性能优于其他模型,AUC值达到94.3%。  相似文献   
2.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
3.
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.  相似文献   
4.
Besides entertainment, games have shown to have the potential to impact a broader variety of cognitive abilities. Research has consistently shown that several aspects in cognition such as visual short-memory, multitasking and spatial skills can be enhanced by game play. In a previous study, it was found that playing Monkey Tales, a game aimed at training arithmetic skills, helped second grade pupils to increase their accuracy in mental calculation as compared to paper exercises. In this follow up study we explore whether traditional methods and game training differ in terms of the cognitive processes that both are able to impact. We incorporated standardized measures of working memory and visuo-motor skills. Additionally, the mathematics game was modified and its contents extracted to allow precise comparison between the gaming and paper exercises condition. Thus each single math exercise, type of question (e.g., multiple choice), quantity and order was perfectly matched in the game training and the traditional training conditions. Gains in arithmetical performance, and self-reported measures of enjoyment were also investigated. We found some evidence suggesting that arithmetic performance enhancement induced by game play and paper exercises differ not only in terms of enjoyment but also of working memory capacity improvements.  相似文献   
5.
We investigated the resistive switching characteristics of a polystyrene:ZnO–graphene quantum dots system and its potential application in a one diode-one resistor architecture of an organic memory cell. The log–log IV plot and the temperature-variable IV measurements revealed that the switching mechanism in a low-current state is closely related to thermally activated transport. The turn-on process was induced by a space-charge-limited current mechanism resulted from the ZnO–graphene quantum dots acting as charge trap sites, and charge transfer through filamentary path. The memory device with a diode presented a ∼103 ION/IOFF ratio, stable endurance cycles (102 cycles) and retention times (104 s), and uniform cell-to-cell switching. The one diode-one resistor architecture can effectively reduce cross-talk issue and realize a cross bar array as large as ∼3 kbit in the readout margin estimation. Furthermore, a specific word was encoded using the standard ASCII character code.  相似文献   
6.
Abstract

Model order reduction is a common practice to reduce large order systems so that their simulation and control become easy. Nonlinearity aware trajectory piecewise linear is a variation of trajectory piecewise linearization technique of order reduction that is used to reduce nonlinear systems. With this scheme, the reduced approximation of the system is generated by weighted sum of the linearized and reduced sub-models obtained at certain linearization points on the system trajectory. This scheme uses dynamically inspired weight assignment that makes the approximation nonlinearity aware. Just as weight assignment, the process of linearization points selection is also important for generating faithful approximations. This article uses a global maximum error controller based linearization points selection scheme according to which a state is chosen as a linearization point if the error between a current reduced model and the full order nonlinear system reaches a maximum value. A combination that not only selects linearization points based on an error controller but also assigns dynamic inspired weights is shown in this article. The proposed scheme generates approximations with higher accuracies. This is demonstrated by applying the proposed method to some benchmark nonlinear circuits including RC ladder network and inverter chain circuit and comparing the results with the conventional schemes.  相似文献   
7.
8.
针对模拟电路健康管理的特点,提出了一种基于PSO优化多核RVM的模拟电路故障预测方法。利用参数分析得到电路的输出频域响应作为特征,计算其与电路无故障标准响应的欧氏距离来表征电路元件健康值,将多个核函数线性组合,并用PSO优化多核RVM参数后的模型实现对各个时间点元件的健康值变化轨迹进行预测。仿真结果表明,该方法在小样本情况下,预测效果优于单一核函数的RVM模型,适用于健康管理中实时预测,具有较好的实用性。  相似文献   
9.
Today’s information technologies involve increasingly intelligent systems, which come at the cost of increasingly complex equipment. Modern monitoring systems collect multi-measuring-point and long-term data which make equipment health prediction a “big data” problem. It is difficult to extract information from such condition monitoring data to accurately estimate or predict health statuses. Deep learning is a powerful tool for big data processing that is widely utilized in image and speech recognition applications, and can also provide effective predictions in industrial processes. This paper proposes the Long Short-term Memory Integrating Principal Component Analysis based on Human Experience (HEPCA-LSTM), which uses operational time-series data for equipment health prognostics. Principal component analysis based on human experience is first conducted to extract condition parameters from the condition monitoring system. The long short-term memory (LSTM) framework is then constructed to predict the target status. Finally, a dynamic update of the prediction model with incoming data is performed at a certain interval to prevent any model misalignment caused by the drifting of relevant variables. The proposed model is validated on a practical case and found to outperform other prediction methods. It utilizes a powerful deep learning analysis method, the LSTM, to fully process big condition monitoring series data; it effectively extracts the features involved with human experience and takes dynamic updates into consideration.  相似文献   
10.
Journal of Computer Science and Technology - New non-volatile memory (NVM) technologies are expected to replace main memory DRAM (dynamic random access memory) in the near future. NAND flash...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号