首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   290篇
  国内免费   9篇
电工技术   12篇
综合类   15篇
化学工业   255篇
金属工艺   5篇
机械仪表   2篇
能源动力   34篇
轻工业   2篇
无线电   359篇
一般工业技术   459篇
冶金工业   4篇
原子能技术   2篇
自动化技术   4篇
  2024年   15篇
  2023年   144篇
  2022年   29篇
  2021年   97篇
  2020年   158篇
  2019年   153篇
  2018年   87篇
  2017年   112篇
  2016年   85篇
  2015年   41篇
  2014年   8篇
  2013年   15篇
  2012年   11篇
  2011年   13篇
  2010年   8篇
  2009年   15篇
  2008年   14篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   18篇
  2003年   9篇
  2002年   13篇
  2001年   17篇
  2000年   16篇
  1999年   7篇
  1998年   4篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   11篇
  1990年   10篇
  1989年   4篇
  1951年   1篇
排序方式: 共有1153条查询结果,搜索用时 0 毫秒
1.
A first‐principles‐based effective Hamiltonian is developed and employed to investigate finite‐temperature structural properties of a prototype of perovskite halides, that is CsPbI3. Such simulations, when using first‐principles‐extracted coefficients, successfully reproduce the existence of an orthorhombic Pnma state and its iodine octahedral tilting angles around room temperature. However, they also yield a direct transformation from Pnma to cubic P m 3 ¯ m upon heating, unlike measurements that reported the occurrence of an intermediate long‐range‐tilted tetragonal P4/mbm phase in‐between the orthorhombic and cubic phases. Such disagreement, which may cast some doubts about the extent to which first‐principle methods can be trusted to mimic hybrid perovskites, can be resolved by “only” changing one short‐range tilting parameter in the whole set of effective Hamiltonian coefficients. In such a case, some reasonable values of this specific parameter result in the predictions that i) the intermediate P4/mbm state originates from fluctuations over many different tilted states; and ii) the cubic P m 3 ¯ m phase is highly locally distorted and develops strong transverse antiphase correlation between first‐nearest neighbor iodine octahedral tiltings, before undergoing a phase transition to P4/mbm under cooling.  相似文献   
2.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   
3.
The Gd substituting effects for La in La0.67Ca0.33MnO3 has been studied .With increasing the substituting amount of Gd,the phase transition temperature of metal-isolator for the samples decreases,the corresponding peak resistivity increases,the Curie temperature decreases monotonically.The substitution of La-Ca-Mn-O with 11% Gd for La improved the magnetoresistance ratio by an order of magnitude.The effects of substituting Gd can be explained in terms of the lattice effects.An irreversible MR behaviour was observed in Gd-substituting compounds.This effect became marked when the substituting amount of Gd was greater than 7%.A maximum irreversible increment of MR ratio as large as 91% was obtained when Gd substituting amount was 11%.  相似文献   
4.
杂原子掺杂碳基氧还原(ORR)催化剂具有代替Pt基催化剂的巨大潜力。以硫掺杂g-C3N4(S-doped g-C3N4, S-g-C3N4)作为硫源和氮源,以三嵌段共聚物P123作为碳源,通过简单的高温热解法成功制备了N、S共掺杂碳(N, S co-doped carbon, NSC)催化剂,并考察了热解温度对制备的NSC催化剂ORR性能的影响。材料表征结果显示:温度为1 000 ℃时制备的催化剂NSC-1000具有较高的氮含量和硫含量及最大的比表面积;电化学测试结果显示:NSC-1000具有最佳的ORR性能,在0.1 mol/L KOH溶液中半波电位(half-wave potential, E1/2)高达0.888 V,且经10 000圈循环伏安扫描后E1/2仅负移12 mV,表现出极佳的活性和稳定性。此外,旋转环盘电极测试结果显示:NSC-1000催化剂主要以四电子反应路径催化ORR的发生。本实验为制备N、S共掺杂碳基高效ORR催化剂提供了新的思路。  相似文献   
5.
dc Electrical Degradation of Perovskite-Type Titanates: I, Ceramics   总被引:2,自引:0,他引:2  
The rate of the resistance degradation of doped SrTiO3 ceramics is investigated as a function of various external and material parameters. The effects of the mutually interrelated parameters dc voltage, dc electric field, and thickness of the dielectric are described by power laws. Electron microscopic potential contrast studies show a Maxwell-Wagner polarization leading to a concentration of the electric field at the grain boundaries during the degradation. Based on this finding, the voltage step per grain boundary, ΔΘgb, is introduced as a rate-determining parameter which allows an explanation of the influence of the grain size on the degradation rate as well as the difference in the power laws for ceramic and single-crystal samples.  相似文献   
6.
The catalytic activity of LaCoO3–-based mixed oxides for the oxidative coupling of methane has been tested by TPR and cyclic reaction. Characterization has been done by XRD, TGA and Mössbauer spectrometry. It is likely that the perovskite-crystal structure containing hypervalent metal ions has an important role and that unique structural oxygen species in the perovskite contribute to the partial oxidation of methane.  相似文献   
7.
Direct nitric oxide decomposition over perovskites is fairly slow and complex, its mechanism changing dramatically with temperature. Previous kinetic study for three representative compositions (La0.87Sr0.13Mn0.2Ni0.8O3−δ, La0.66Sr0.34Ni0.3Co0.7O3−δ and La0.8Sr0.2Cu0.15Fe0.85O3−δ) has shown that depending on the temperature range, the inhibition effect of oxygen either increases or decreases with temperature. This paper deals with the effect of CO2, H2O and CH4 on the nitric oxide decomposition over the same perovskites studied at a steady-state in a plug-flow reactor with 1 g catalyst and total flowrates of 50 or 100 ml/min of 2 or 5% NO. The effect of carbon dioxide (0.5–10%) was evaluated between 873 and 923 K, whereas that of H2O vapor (1.6 or 2.5%) from 723 to 923 K. Both CO2 and H2O inhibit the NO decomposition, but inhibition by CO2 is considerably stronger. For all three catalysts, these effects increase with temperature. Kinetic parameters for the inhibiting effects of CO2 and H2O over the three perovskites were determined. Addition of methane to the feed (NO/CH4=4) increases conversion of NO to N2 about two to four times, depending on the initial NO concentration and on temperature. This, however, is still much too low for practical applications. Furthermore, the rates of methane oxidation by nitric oxide over perovskites are substantially slower than those of methane oxidation by oxygen. Thus, perovskites do not seem to be suitable for catalytic selective NO reduction with methane.  相似文献   
8.
Ammoxidation of toluene over the perovskites YBa2Cu3O6.1, YBa2Cu2CoO6.7 and YBaCuCoO4.9 was investigated at 400 °C. At low partial pressures of O2 benzonitrile was selectively formed, while CO2 was the main product at high pressures of O2. Systematic differences in activity were observed for the three phases and are related to the crystal contents of Cu and Co. At low O2 pressures, Cu-sites are active for nitrile formation, while Co-sites give CO2. At high O2 pressures, the activity for CO2 of Cu-sites increases more than that of Co-sites due to filling of near-surface oxygen vacancies.  相似文献   
9.
A complex perovskite of Sr(Cu x Zn1- x )1/2 W1/2O3 (SCZW) is synthesized by a new combination of wet and dry processess. Mixed oxides containing Cu2+ and Zn2+ (CZ) are prepared by the wet process (coprecipitate method). SCZW is obtained by the dry process (mixed-oxide method) from a mixture of CZ, SrCO3, and WO3. SCZW has practically no compositional, unlike solid solutions prepared by the conventional dry method. The wet–dry process method is useful because the wet process is applied to only B-site cations having the same valence.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号