首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4759篇
  免费   436篇
  国内免费   163篇
电工技术   62篇
综合类   186篇
化学工业   2672篇
金属工艺   294篇
机械仪表   71篇
建筑科学   17篇
矿业工程   23篇
能源动力   103篇
轻工业   252篇
水利工程   3篇
石油天然气   64篇
武器工业   13篇
无线电   278篇
一般工业技术   1196篇
冶金工业   79篇
原子能技术   18篇
自动化技术   27篇
  2024年   51篇
  2023年   144篇
  2022年   160篇
  2021年   233篇
  2020年   207篇
  2019年   228篇
  2018年   219篇
  2017年   219篇
  2016年   178篇
  2015年   169篇
  2014年   183篇
  2013年   326篇
  2012年   335篇
  2011年   313篇
  2010年   249篇
  2009年   275篇
  2008年   218篇
  2007年   285篇
  2006年   283篇
  2005年   270篇
  2004年   203篇
  2003年   191篇
  2002年   127篇
  2001年   79篇
  2000年   60篇
  1999年   45篇
  1998年   36篇
  1997年   24篇
  1996年   8篇
  1995年   5篇
  1994年   10篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1951年   1篇
排序方式: 共有5358条查询结果,搜索用时 31 毫秒
1.
In this work, TiO2 nanoparticles are surface modified by NH2-terminated organic moieties arised from 4,4′-methylene diphenyl diisocyanate (MDI). These nanoparticles are incorporated into ether-based segmented polyurethane (SPU) matrix. MDI is utilized as monomer together with poly(tetramethylene oxide) (PTMO) comonomer for preparing the final polymer as well. The NH2-functionalized TiO2 nanoparticles are covalently linked to the NCO terminals of the resulting SPU macromolecules during film preparation stage. Therefore, in addition to butylene glycol, these surface modified nanoparticles with enhanced organophilicity could play the role of the second chain extender of NCO-capped SPU macromolecules through formation of urea linkages. Optical and thermal behaviors of the transparent and flexible film (SPU/TiO2–MDI) is compared with those of unmodified TiO2 (SPU/TiO2) and TiO2-unloaded SPU films. Though the particle loading is only 5 wt.%, incorporation of TiO2 and TiO2–MDI nanoparticles into the SPU polymer enhances significantly the light absorption in UV region at 300–400 nm. SEM images of the prepared films clearly show a considerable decrease in particle aggregation for TiO2–MDI into SPU matrix compared to that of unmodified TiO2. TG analyses indicate a one-step decomposition pattern with onset temperatures of about 360 and 380 °C for neat SPU and SPU/TiO2–MDI, respectively. Moreover, DTA thermograms of both nanocomposites show obviously two exothermic phase transitions in the thermal range of 330–440 °C.  相似文献   
2.
Polyethersulphone (PES) is an aromatic thermoplastic, at low environmental impact, evaluated in this work as a promising candidate for new polymer electrolytes in the PEMFCs technology. A sulfonation procedure has been tuned in order to graft sulfonic acid groups on the polymer chains (sPES) and to make it hydrophilic. Homogeneous membranes with different polymer's sulfonation degrees (SD%) have demonstrated excellent mechanical properties and very low permeability toward methanol (important in the DMFCs), even if low proton conductivity. Nanocomposite sPES membranes were prepared by dispersion of highly hydrophilic lamellar particles such as layered double hydroxide (LDH) in the polymer. Deep investigations performed by a combination of PFG-NMR, EIS, XRD, DMA, and scanning electron microscopy have evidenced the exfoliation of the lamellae in polymer matrix. However, a certain anisotropy was evidenced both in the morphology and molecular diffusion, favored in the longitudinal direction (parallel to surface), while completely inhibited in the cross-section. This finding is most likely induced by the polymer structure, therefore particular attention must be paid to the choice of the filler and preparation of the composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47884.  相似文献   
3.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
4.
5.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   
6.
Clay polyurethane nanocomposite (CPN) coating films were fabricated by uniformly dispersing nanoclay, organically modified with 25–30 wt.% octadecylamine in varying concentrations up to 5 wt.%, in a commercial two component, glossy, acrylic aliphatic polyurethane using ultrasonication. Organo-modified nanoclay was characterized by X-ray diffraction (XRD). The dispersion of the nanoclay into the matrix was investigated by scanning electron microscopy (SEM). CPN coating films were characterized by thermogravimetric analysis (TGA), and flame retardant, corrosion resistance and mechanical properties were also investigated. The XRD measurement indicated that, the organo-modified nanoclay particles were mainly constituted of montmorillonite with traces of quartz and calcite also found to be present. The SEM analysis showed that the nanoclay layers were dispersed and intercalated into the polyurethane coating. Thermogravimetric analysis showed that incorporating 5 wt.% organo-nanoclay into polyurethane considerably enhanced the thermal stability and increased the char residue to 14.11 wt.% relative to 4.58 for the sample without organo-nanoclay (blank polyurethane). The limiting oxygen index (LOI) test revealed that incorporation of organo-nanoclay led to a further increase in LOI values, which indicate an improvement in flame retardancy properties. The corrosion resistance also improved and this improvement increases with increase nanoclay wt.%. The mechanical resistance measurements demonstrated that the gloss of the CPN coating films slightly decreased, although hardness, adhesion and impact resistance of the CPN coating films improved with the incorporation of the organo-nanoclay.  相似文献   
7.
Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite effect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal effects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells.  相似文献   
8.
Soft robots built with active soft materials have been increasingly attractive. Despite tremendous efforts in soft sensors and actuators, it remains extremely challenging to construct intelligent soft materials that simultaneously actuate and sense their own motions, resembling living organisms’ neuromuscular behaviors. This work presents a soft robotic strategy that couples actuation and strain-sensing into a single homogeneous material, composed of an interpenetrating double-network of a nanostructured thermo-responsive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) and a light-absorbing, electrically conductive polymer polypyrrole (PPy). This design grants the material both photo/thermal-responsiveness and piezoresistive-responsiveness, enabling remotely-triggered actuation and local strain-sensing. This self-sensing actuating soft material demonstrated ultra-high stretchability (210%) and large volume shrinkage (70%) rapidly upon irradiation or heating (13%/°C, 6-time faster than conventional PNIPAAm). The significant deswelling of the hydrogel network induces densification of percolation in the PPy network, leading to a drastic conductivity change upon locomotion with a gauge factor of 1.0. The material demonstrated a variety of precise and remotely-driven photo-responsive locomotion such as signal-tracking, bending, weightlifting, object grasping and transporting, while simultaneously monitoring these motions itself via real-time resistance change. The multifunctional sensory actuatable materials may lead to the next-generation soft robots of higher levels of autonomy and complexity with self-diagnostic feedback control.  相似文献   
9.
Photocatalysts have attracted great research interest owing to their excellent properties and potential for simultaneously addressing challenges related to energy needs and environmental pollution. Photocatalytic particles need to be in contact with their respective media to exhibit efficient photocatalytic performances. However, it is difficult to separate nanometer-sized photocatalytic materials from reaction media later, which may lead to secondary pollution and a poor recycling performance. Hydrogel photocatalysts with a three-dimensional (3D) network structures are promising support materials for photocatalysts based on features such as high specific surface areas and adsorption capacities and good environmental compatibility. In this review, hydrogel photocatalysts are classified into two different categories depending on their elemental composition and recent progresses in the methods for preparing hydrogel photocatalysts are summarized. Moreover, current applications of hydrogel photocatalysts in energy conversion and environmental remediation are reviewed. Furthermore, a comprehensive outlook and highlight future challenges in the development of hydrogel photocatalysts are presented.  相似文献   
10.
由丙烯酸(AA)、α-甲基丙烯酸(MAA)和丙烯酰胺(AM)合成了具有很好DH敏感性和一定温度敏感性的智能水凝胶,考察了合成温度、丙烯酰胺、交联剂和引发剂用量对制备的水凝胶溶胀性能的影响。结果表明,在60℃下,单体从和MAA用量分别为100mmol和75mmol时,单体AM、交联剂和引发剂用量分别为反应物总质量的32.8%、0.2%和0.4%时,制备的水凝胶溶胀性能最好。考察了介质的离子浓度、pH值和温度对水凝胶溶胀比的影响,结果表明,离子浓度越大,水凝胶的溶胀比越小;水凝胶具有一定的DH可逆性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号