首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9092篇
  免费   975篇
  国内免费   415篇
电工技术   153篇
综合类   645篇
化学工业   2918篇
金属工艺   491篇
机械仪表   173篇
建筑科学   745篇
矿业工程   241篇
能源动力   358篇
轻工业   1418篇
水利工程   393篇
石油天然气   628篇
武器工业   41篇
无线电   371篇
一般工业技术   1020篇
冶金工业   621篇
原子能技术   134篇
自动化技术   132篇
  2024年   32篇
  2023年   191篇
  2022年   339篇
  2021年   389篇
  2020年   423篇
  2019年   342篇
  2018年   271篇
  2017年   329篇
  2016年   341篇
  2015年   353篇
  2014年   469篇
  2013年   554篇
  2012年   625篇
  2011年   643篇
  2010年   447篇
  2009年   506篇
  2008年   441篇
  2007年   532篇
  2006年   474篇
  2005年   366篇
  2004年   330篇
  2003年   288篇
  2002年   230篇
  2001年   191篇
  2000年   167篇
  1999年   161篇
  1998年   123篇
  1997年   105篇
  1996年   105篇
  1995年   98篇
  1994年   81篇
  1993年   66篇
  1992年   62篇
  1991年   57篇
  1990年   58篇
  1989年   46篇
  1988年   38篇
  1987年   32篇
  1986年   38篇
  1985年   34篇
  1984年   34篇
  1983年   19篇
  1982年   20篇
  1981年   10篇
  1980年   9篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
3.
《Ceramics International》2022,48(14):20062-20069
Photocatalytic N2 fixation is a promising and sustainable manufacturing process of ammonia (NH3); however, the NH3 production rate by this method is very low, thus severely restricting further application of this sustainable technology. Therefore, developing an efficient photocatalyst for N2 fixation under mild conditions is urgently required. Herein, ferroelectric Bi2WO6 materials with different surface oxygen defects were prepared, and the concentration of corresponding defects was controlled by adjusting the thermal reduction time. The abundant oxygen defects in Bi2WO6 can provide more reactive sites to promote the effective adsorption of N2, and the photogenerated charge carrier can be efficiently separated benefiting from the internal electric field. These would weaken the N2 triple bond and reduce the activation energy barrier for the conversion of N2 to NH3 under mild conditions. In the absence of sacrificial agents and cocatalysts, the optimized Bi2WO6 with oxygen defects shows an indigenous NH3 yield of 132.175 μmol·g-1·L-1·h-1, which is more than two times higher than that of the original Bi2WO6. Surprisingly, the Bi2WO6 with oxygen defects produced more than eight times NH3 (471.13 μmol·g-1·L-1·h-1) than that of the original Bi2WO6 when assisted by an external magnetic field, thus providing a new perspective for further enhancing the N2 fixation performance.  相似文献   
4.
Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.  相似文献   
5.
《Ceramics International》2022,48(2):1857-1868
Pure and carbon-coated tantalum-based oxides photocatalysts were synthesized via the mesocrystalline precursor transformation method by annealing pure and polydopamine-coated (NH4)2Ta2O3F6 mesocrystals in Ar. The oxygen-poor atmosphere thermal annealing process assisted the formation of nonstoichiometric TaO2F mesocrystals with more F and Ta2O5 nanorods with oxygen vacancies and the associated lower valence state Ta ions (Ta4+). Furthermore, the carbon coating, decomposed from coated polydopamine, helped to control their particle size within 100 nm by isolating the connection of (NH4)2Ta2O3F6 subunits. Hence, as-synthesized products, particularly carbon-coated Ta2O5 nanosheets, owning large surface area (67.6 m2 g?1), fine particle size (<100 nm), excellent electronic conductivity, decreased bandgap energy, enhanced and extended absorption in the visible range, exhibited preferable photocatalytic activity in the photodegradation of methylene blue, reaching a 76.54 % and 41.71 % removal under ultraviolet and visible light illumination, suggesting a promising candidate for wide-range responsive photocatalytic applications.  相似文献   
6.
Bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) oxides are investigated as SOFC cathodes. The effects of Bi doping on the phase structure, thermal expansion, electrical conduction behavior as well as electrochemical performance are studied. All the samples exist as a tetragonal Ruddlesden-Popper structure. Bi-doped LBNO-0.02 and LBNO-0.04 have good chemical and thermal compatibility with LSGM electrolyte. The average TEC over 20–900°С was 13.4 × 10?6 and 14.2 × 10?6 K?1 for LBNO-0.02 and LBNO-0.04, respectively. The electrical conductivity was decreasing with the rise of Bi doping content. EIS measurement indicates Bi doping can decrease the ASR values. At 750 °C, the obtained ASR for LBNO-0.04 is 0.18 Ωcm2, which is 56% lower than that of the sample without Bi doping, suggesting Bi doping is beneficial to the electrochemical catalytic activity of LBNO cathodes.  相似文献   
7.
We propose the question of the modulated structures of copper oxide is caused by the [CuO2] in-plane oxygen vacancy or apical oxygen vacancy. Sr2CuO3+δ single-crystal samples were prepared using high-temperature and high-pressure methods. The major phase of Sr2CuO3+δ (δ = 0.4) single-crystal system is found to be constituted by the 5 a modulated structure with the Fmmm space group, which originates from the [CuO2] in-plane oxygen vacancy appearing in octahedral Cu-O. Besides, the presence of the [CuO2] in-plane oxygen vacancy may obliterate the superconductivity of the system. Experimental results deduce that the oxygen vacancy may appear in the apical oxygen sites in high-temperature copper oxide superconductors.  相似文献   
8.
Fluorescent nanodiamonds (fNDs) containing nitrogen vacancy (NV) centers are promising candidates for quantum sensing in biological environments. This work describes the fabrication and implementation of electrospun poly lactic‐co‐glycolic acid (PLGA) nanofibers embedded with fNDs for optical quantum sensing in an environment, which recapitulates the nanoscale architecture and topography of the cell niche. A protocol that produces uniformly dispersed fNDs within electrospun nanofibers is demonstrated and the resulting fibers are characterized using fluorescent microscopy and scanning electron microscopy (SEM). Optically detected magnetic resonance (ODMR) and longitudinal spin relaxometry results for fNDs and embedded fNDs are compared. A new approach for fast detection of time varying magnetic fields external to the fND embedded nanofibers is demonstrated. ODMR spectra are successfully acquired from a culture of live differentiated neural stem cells functioning as a connected neural network grown on fND embedded nanofibers. This work advances the current state of the art in quantum sensing by providing a versatile sensing platform that can be tailored to produce physiological‐like cell niches to replicate biologically relevant growth environments and fast measurement protocols for the detection of co‐ordinated endogenous signals from clinically relevant populations of electrically active neuronal circuits.  相似文献   
9.
Artificial nitrogen fixation is emerging as a promising approach for synthesis of ammonia at mild conditions. Inspired by biological nitrogen fixation based on bacteria containing iron, zinc doped Fe2O3 nanoparticles are proposed as an efficient and earth abundant electrocatalyst for converting N2 to NH3. In neutral media, it achieves a maximum Faradaic efficiency (FE) of 10.4% and a large NH3 yield rate of 15.1 μg h?1 mg?1cat. at ?0.5 V vs. reversible hydrogen electrode. This catalyst also exhibits excellent selectivity and stability. Theoretical calculations suggest the reaction follows the associative enzymatic mechanism and it has a barrier of as low as 0.68 eV.  相似文献   
10.
含氮化合物对NiW体系催化剂芳烃加氢性能的影响   总被引:2,自引:0,他引:2  
以γ-Al2O3、B改性的γ-Al2O3、F改性的γ-Al2O3、SiO2-Al2O3为载体制备Ni、W含量相同的四种催化剂,通过程序升温还原表征考察活性金属与不同载体的相互作用。利用氮含量不同、四氢萘含量相同的四种原料考察含氮化合物对同种NiW体系催化剂四氢萘加氢的影响以及对活性金属与载体相互作用不同的催化剂四氢萘加氢的影响。结果表明,以γ-Al2O3或SiO2-Al2O3载体制备的催化剂的金属组分与载体相互作用较强,B或F改性的γ-Al2O3能显著削弱活性金属与载体的相互作用;含氮化合物对四氢萘加氢具有强烈的抑制作用,使四氢萘加氢反应的表观活化能增加;在实验研究的四种催化剂中,金属组分与载体相互作用较弱的催化剂受含氮化合物的抑制较强。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号