首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   24篇
  国内免费   2篇
综合类   2篇
化学工业   205篇
金属工艺   1篇
机械仪表   1篇
轻工业   16篇
石油天然气   2篇
无线电   7篇
一般工业技术   50篇
  2024年   3篇
  2023年   10篇
  2022年   12篇
  2021年   12篇
  2020年   16篇
  2019年   13篇
  2018年   16篇
  2017年   16篇
  2016年   14篇
  2015年   9篇
  2014年   9篇
  2013年   13篇
  2012年   28篇
  2011年   12篇
  2010年   16篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   10篇
  2004年   9篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1985年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
1.
2.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
3.
Novel polyurethane insulating coatings were prepared from the reaction of glycerin‐terminated polyurethane prepolymers (GPUPs) and a blocked isocyanate curing agent (BIC). The GPUPs were prepared from the reaction of one equivalent of polycaprolactone polyol (CAPA 210) with an excess amount of 4,4′‐methylene bis(phenyl isocyanate) (MDI) and subsequent reaction of the NCO‐terminated polyurethane with glycerin. The BIC was prepared from the reaction of trimethylol propane (TMP), toluene diisocyanate (TDI) and N‐methylaniline (NMA). The polyols and curing agent were characterized by conventional methods while the curing condition was optimized via gel content measurements. The curing kinetics of the polyurethane coating were investigated and the kinetic parameters derived. The crosslink densities of the samples were determined via the equilibrium swelling method, using the Flory–Rehner equation. The relationships between the crosslink density and the electrical, physical, mechanical and dynamic mechanical properties of the coatings were also studied. Copyright © 2005 Society of Chemical Industry  相似文献   
4.
综述了近年来可生物降解热熔胶的发展、合成、性能、应用、最新的研究进展。  相似文献   
5.
作为一种新型的微纳制造技术,熔体直写电纺被广泛用于组织工程支架的可控制备,有序的纤维沉积是该领域应用的前提条件。对于支架成型精度的探究,本文使用生物可降解材料聚己内酯(PCL),采用自行设计的熔体电纺三维可控成型设备进行实验,考察了纤维间距对二维并行纤维沉积形貌及成型精度的影响,以及纺丝电压和网格大小对三维网格结构形貌及精度影响。结果表明,随着并行纤维设定距离的增大,纤维的沉积误差减小,并最终趋于平稳。对于三维网格结构,随电压的增加,最大沉积层数量先增大后减小,当纺丝电压为6kV时达到最大沉积层数15层。成型精度误差先减小后增大,当纺丝电压为7kV时,精度最高误差小于5%。随设定网格边长的增大,沉积层数不断增大。成型精度逐渐提高,当网格边长大于等于1.5mm时,沉积误差趋于稳定,并维持在5%左右。  相似文献   
6.
热塑性淀粉/聚己内酯共混物的制备和性能的初步研究   总被引:8,自引:2,他引:8  
利用热塑性淀粉(TPS)与聚己内酯(PCL)熔融共混并挤出可用来制备完全可生物降解的塑料,研究表明,组分PCL以及增塑剂水和甘油的含量对体系的力学性能和耐水性有显著的影响。  相似文献   
7.
Silyl‐crosslinked urethane elastomer modifying epoxy resin has drawn much interest. Here the triethoxysilyl‐terminated polycaprolactone elastomer (PCL‐TESi) modifying diglycidylether of bisphenol A epoxy resins (DGEBA) system was chosen, and then the effect of the type of curing agent on the phase structure of the studied epoxy resin system was investigated. The modified systems were obtained with different phase structures by varying the formulations of the curing agent. It was experimentally shown that with the addition of aminosilane (KBE‐9103), the crosslinked density was greatly increased. The cured system also showed from SEM and TEM analysis that addition of KBE‐9103 increased the compatibility between the PCL‐TESi and DGEBA, which made the ductility of the system decrease, but also indicated from TEM that addition of much KBE‐9103 made the reacted silicone particles coagulate each other. The state of phase separation from TEM in the cured system was theoretically explained. These would serve the deeper studies of the mechanism of silyl‐crosslinked urethane elastomer modifying epoxy resin in the future. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 611–619, 2005  相似文献   
8.
Polycaprolactone (PCL)/starch and PCL/starch/pine‐leaf composites, which can be possibly applied as biodegradable food packaging materials with natural pine flavor, were prepared and characterized in this study. The effect of incorporating a silane coupling agent at different content levels on the physical properties and morphology of the composites was studied. To investigate the melting behavior of the composites, a differential scanning calorimetry was employed. A universal testing machine was used to investigate the tensile properties of the composites and the water absorption properties of the composites were also investigated. Scanning electron microscope was used to investigate the morphology of the composites. The physical properties and morphology of the PCL/starch and PCL/starch/pine‐leaf composites were largely affected by the composition, especially the content of the silane coupling agent. The silane coupling agent led to a much better interfacial compatibility between the PCL matrix and the fillers and resulted in better physical properties of the composites. The PCL/starch/pine‐leaf composite with the silane coupling agent showed a morphology, indicating a good interfacial adhesion between the PCL matrix and the fillers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 928–934, 2007  相似文献   
9.
综述了目前典型生物降解材料在水环境中降解性能的研究现状,详细介绍了聚乳酸(PLA)高分子材料(PLA、PLA共聚物、PLA复合材料等)、聚羟基烷酸酯(PHA)、聚己内酯(PCL)、聚丁二酸丁二醇酯(PBS)、聚(己二酸丁二醇酯?对苯二甲酸乙二醇酯)(PBAT)和CO2共聚物等在不同水环境中的降解性能;最后总结了生物降解材料未来需要关注的问题和发展方向。  相似文献   
10.
Cardiovascular disease is the leading cause of mortality worldwide. Therefore, new research strategies for the treatment of cardiovascular disease are required. Previously, extracellular matrices (ECMs) have been used alongside polymers to generate hybrid bioscaffolds. Herein, we propose combining aortic ECMs with a polycaprolactone electrospun scaffold and biomechanically evaluating the scaffolds. We electrospun three scaffolds with varying ECM concentrations and found that increasing the ECM concentration leads to decreased stiffness at low strains, increased elasticity at high strain, reduction in failure strain, and an increase in yield strength. We also noted a decrease in water droplet contact angle with the increasing ECM concentration. Furthermore, we found that all three scaffolds were capable of maintaining human umbilical vein endothelial cell attachment and survival. These findings show the wide spectrum of mechanical properties that can be achieved through the addition of different concentrations of ECM into the fibers. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48181.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号