首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31400篇
  免费   2641篇
  国内免费   1039篇
电工技术   2628篇
技术理论   4篇
综合类   2452篇
化学工业   4052篇
金属工艺   1564篇
机械仪表   1392篇
建筑科学   3975篇
矿业工程   1264篇
能源动力   1576篇
轻工业   1322篇
水利工程   1202篇
石油天然气   1191篇
武器工业   239篇
无线电   2743篇
一般工业技术   3593篇
冶金工业   2622篇
原子能技术   229篇
自动化技术   3032篇
  2024年   86篇
  2023年   905篇
  2022年   505篇
  2021年   884篇
  2020年   986篇
  2019年   843篇
  2018年   740篇
  2017年   807篇
  2016年   891篇
  2015年   856篇
  2014年   1493篇
  2013年   1286篇
  2012年   1761篇
  2011年   2172篇
  2010年   1740篇
  2009年   1724篇
  2008年   1679篇
  2007年   2159篇
  2006年   2023篇
  2005年   1736篇
  2004年   1469篇
  2003年   1380篇
  2002年   1207篇
  2001年   932篇
  2000年   844篇
  1999年   685篇
  1998年   479篇
  1997年   452篇
  1996年   404篇
  1995年   385篇
  1994年   277篇
  1993年   196篇
  1992年   198篇
  1991年   130篇
  1990年   108篇
  1989年   128篇
  1988年   81篇
  1987年   46篇
  1986年   52篇
  1985年   65篇
  1984年   39篇
  1983年   46篇
  1982年   17篇
  1981年   41篇
  1980年   20篇
  1979年   16篇
  1978年   11篇
  1977年   9篇
  1976年   9篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
A new catalyst for both water reduction and oxidation, based on an infinite chain, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n, is formed by the reaction of NiCl2, 1,3-propanediamine (tn) and K3 [Fe(CN)6]. {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can electro-catalyze hydrogen evolution from a neutral aqueous buffer (pH 7.0) with a turnover frequency (TOF) of 1561 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) at an overpotential (OP) of 837 mV {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n also can electro-catalyze O2 production from water with a TOF of ~45 mol O2 (mol cat)?1s?1 at an OP of 591 mV. Under blue light (λ = 469 nm), together with CdS nanorods (CdS NRs) as a photosensitizer, and ascorbic acid (H2A) as a sacrificial electron donor, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can photo-catalyze hydrogen generation from an aqueous buffer (pH 4.0) with a turnover number (TON) of 11,450 mol H2 per mole of catalyst (mol of H2 (mol of cat)?1) during 10 h irradiation. The average of apparent quantum yield (AQY) is as high as 40.96% during 10 h irradiation. Studies indicate that {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n exists in two forms: a cyano-bridged chain ({[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n) in solid, and a salt ([Ni(tn)2]3 [Fe(CN)6]2) in aqueous media; Catalytic reaction occurs on the nickel center of [Ni(tn)2]2+, and the introduction of [Fe(CN)6]3- can improve the catalytic efficiency of [Ni(tn)2]2+ for H2 or O2 generation. We hope these findings can afford a new method for the design of catalysts for both water reduction and oxidation.  相似文献   
2.
KH550, KH560, CTAB, and F127 were adopted to modify silicon (Si) to improve the dispersity and stability of Si in the polyacrylonitrile/dimethyl sulfoxide (PAN/DMSO) polymer solutions. The influence of surfactants on rheological behaviors of PAN/DMSO/Si blending polymer solutions was investigated by an advanced solution and melt rotation rheometer. The homogeneity and stability were also studied. The results showed that the surfactants could change the viscosity dependence of blending polymer solutions on shear rate, temperature and storage time by increase the steric hindrance of Si. Among the four solutions, PAN/DMSO/Si blending polymer solution with F127 exhibited the lowest viscosity, activation energy and the smallest structural viscosity index and exhibited the trend close to the Newtonian fluids. Moreover, PAN/DMSO/Si blending polymer solution with F127 exhibited the best dispersity and stability, indicating its best physical properties and machinability.  相似文献   
3.
Residential natural gas consumption depends on several factors. Available tools and methods to identify, categorize, and validate effective factors have some limitations, making consumption modeling more complex. Once a comprehensive model of effective consumption factors is developed for residential gas consumers, it can predict consumption. In addition, such a model could be used to verify the accuracy of measuring devices in order to reduce unaccounted for gas (UFG). The key factors affecting residential gas consumption were identified based on previous studies and their mutual effects were analyzed using a fuzzy cognitive mapping (FCM) method. The most significant factors and their effects on natural gas consumption in the residential sector were determined. In this study, for the first time, the expected consumption for each consumer was estimated using a consumption index. Generally, if the estimated consumption is significantly different from the amount recorded by the meter, it could suggest a potential source of UFG. The proposed method was applied to the data collected from the residential gas consumers of a small region in Iran (Dasht-e Arjan region, Fars province), and the results demonstrate the effectiveness of the proposed method.  相似文献   
4.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
5.
In this study, La was doped into the lithium layer of Li-rich cathode material and formed a layered-spinel hetero-structure. The morphology, crystal structure, element valence and kinetics of lithium ion migration were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The La doped lithium-rich cathode material exhibited similar initial discharge capacity of 262.8 mAh g?1 at 0.1 C compared with the undoped material, but the discharge capacity retention rate can be obviously improved to 90% after 50 cycles at 1.0 C. Besides that, much better rate capability and Li+ diffusion coefficient were observed. The results revealed that La doping not only stabilized the material structure and reduced the Li/Ni mixing degree, but also induced the generation of spinel phase to provide three-dimensional diffusion channels for lithium ion migration. Moreover, the porous structure of the doped samples also contributed to the remarkable excellent electrochemical performance. All of these factors combined to significantly improve the electrochemical performance of the material.  相似文献   
6.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
7.
8.
以电信用户入网协议为切入点,电信用户的携号转网行为应受到《合同法》《消费者权益保护法》等私法规范的保护与限制。该行为引起的格式条款解释、合同终止、违约责任、损失赔偿等问题,不能仅靠《电信条例》等公法规范来调整。应当积极引导广大消费者用户以私法领域相关规定为依据,转变争议解决思维,拓宽纠纷处理途径,合理选择维权手段,以保护自身合法民事权益,与行业监管部门共同推动电信行业有序发展。  相似文献   
9.
Massive Open Online Courses (MOOCs) are becoming an essential source of information for both students and teachers. Noticeably, MOOCs have to adapt to the fast development of new technologies; they also have to satisfy the current generation of online students. The current MOOCs’ Management Systems, such as Coursera, Udacity, edX, etc., use content management platforms where content are organized in a hierarchical structure. We envision a new generation of MOOCs that support interpretability with formal semantics by using the SemanticWeb and the online social networks. Semantic technologies support more flexible information management than that offered by the current MOOCs’ platforms. Annotated information about courses, video lectures, assignments, students, teachers, etc., can be composed from heterogeneous sources, including contributions from the communities in the forum space. These annotations, combined with legacy data, build foundations for more efficient information discovery in MOOCs’ platforms. In this article we review various Collaborative Semantic Filtering technologies for building Semantic MOOCs’ management system, then, we present a prototype of a semantic middle-sized platform implemented at Western Kentucky University that answers these aforementioned requirements.  相似文献   
10.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号