首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   9篇
  国内免费   1篇
矿业工程   1篇
无线电   11篇
一般工业技术   14篇
自动化技术   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Silicene, a new 2D material has attracted intense research because of the ubiquitous use of silicon in modern technology. However, producing free-standing silicene has proved to be a huge challenge. Until now, silicene could be synthesized only on metal surfaces where it naturally forms strong interactions with the metal substrate that modify its electronic properties. Here, the authors report the first experimental evidence of silicene nanoribbons on an insulating NaCl thin film. This work represents a major breakthrough, for the study of the intrinsic properties of silicene, and by extension to other 2D materials that have so far only been grown on metal surfaces.  相似文献   
2.
The fascinating electronic and optoelectronic properties of free‐standing graphene has led to the exploration of alternative two‐dimensional materials that can be easily integrated with current generation of electronic technologies. In contrast to 2D oxide and dichalcogenides, elemental 2D analogues of graphene, which include monolayer silicon (silicene), are fast emerging as promising alternatives, with predictions of high degree of integration with existing technologies. This article reviews this emerging class of 2D elemental materials – silicene, germanene, stanene, and phosphorene – with emphasis on fundamental properties and synthesis techniques. The need for further investigations to establish controlled synthesis techniques and the viability of such elemental 2D materials is highlighted. Future prospects harnessing the ability to manipulate the electronic structure of these materials for nano‐ and opto‐electronic applications are identified.  相似文献   
3.
The synthesis of new Xenes and their potential applications prototypes have achieved significant milestones so far. However, to date the realization of Xene heterostructures in analogy with the well known van der Waals heterostructures remains an unresolved issue. Here, a Xene heterostructure concept based on the epitaxial combination of silicene and stanene on Ag(111) is introduced, and how one Xene layer enables another Xene layer of a different nature to grow on top is demonstrated. Single-phase (4 × 4) silicene is synthesized using stanene as a template, and stanene is grown on top of silicene on the other way around. In both heterostructures, in situ and ex situ probes confirm layer-by-layer growth without intercalations and intermixing. Modeling via density functional theory shows that the atomic layers in the heterostructures are strongly interacting, and hexagonal symmetry conservation in each individual layer is sequence selective. The results provide a substantial step toward currently missing Xene heterostructures and may inspire new paths for atomic-scale materials engineering.  相似文献   
4.
5.
6.
A first principles study on the stability and structural and electronic properties of two-dimensional silicon allotropes on a semiconducting layered metal-chalcogenide compound,namely SnS2,is performed.The interactions between the two-dimensional silicon layer,commonly known as silicene,and the layered SnS2 template are investigated by analyzing different configurations of silicene.The calculated thermodynamic phase diagram suggests that the most stable configuration of silicene on SnS2 belongs to a family of structures with Si atoms placed on three different planes;so-called dumbbell silicene.This particular dumbbell silicene structure preserves its atomic configuration on SnS2 even at a temperature of 500 K or as a "flake" layer (i.e.,a silicene cluster terminated by H atoms),thanks to the weak interactions between the silicene and the SnS2 layers.Remarkably,an electric field can be used to tune the band gap of the silicene layer on SnS2,eventually changing its electronic behavior from semiconducting to (semi)metallic.The stability of silicene on SnS2 is very promising for the integration of silicene onto semiconducting or insulating substrates.The tunable electronic behavior of the silicene/SnS2 van der Walls heterostructure is very important not only for its use in future nanoelectronic devices,but also as a successful approach to engineering the bang-gap of layered SnS2,paving the way for the use of this layered compound in energy harvesting applications.  相似文献   
7.
Silicene, a Si analogue of graphene, is suggested to become a versatile material for nanoelectronics. Being coupled with magnetism, it is predicted to be particularly suitable for spintronic applications. However, experimental realization of free‐standing silicene and its magnetic derivatives is lacking. Fortunately, magnetism can be induced into silicene layers, in particular, by intercalation. Here, a successful synthesis of multilayer silicene intercalated by inherently magnetic Eu ions – a compound expected to exhibit both massless Dirac‐cone states, as its Ca analogue, and a nontrivial magnetic structure – is reported. This new polymorph with EuSi2 stoichiometry is epitaxially stabilized by continual replication of silicene layers employing Sr‐intercalated multilayer silicene as a template. The atomic structure of the new compound and its sharp interface with the template are confirmed using electron diffraction, X‐ray diffraction, and electron microscopy techniques. Below 80 K, the material demonstrates anisotropic antiferromagnetism coexisting with weak ferromagnetism. The magnetic state is accompanied by an anomalous behavior of magnetoresistivity.  相似文献   
8.
Silicon‐based biomaterials play an indispensable role in biomedical engineering; however, due to the lack of intrinsic functionalities of silicon, the applications of silicon‐based nanomaterials are largely limited to only serving as carriers for drug delivery systems. Meanwhile, the intrinsically poor biodegradation nature for silicon‐based biomaterials as typical inorganic materials also impedes their further in vivo biomedical use and clinical translation. Herein, by the rational design and wet chemical exfoliation synthesis of the 2D silicene nanosheets, traditional 0D nanoparticulate nanosystems are transformed into 2D material systems, silicene nanosheets (SNSs), which feature an intriguing physiochemical nature for photo‐triggered therapeutics and diagnostic imaging and greatly favorable biological effects of biocompatibility and biodegradation. In combination with DFT‐based molecular dynamics (MD) calculations, the underlying mechanism of silicene interactions with bio‐milieu and its degradation behavior are probed under specific simulated physiological conditions. This work introduces a new form of silicon‐based biomaterials with 2D structure featuring biodegradability, biocompatibility, and multifunctionality for theranostic nanomedicine, which is expected to promise high clinical potentials.  相似文献   
9.
Silicene is a two‐dimensional structure composed of a buckled hexagonal honeycomb lattice of silicon atoms. Freestanding silicene is yet to be synthesized, but epitaxial silicene monolayers have been directly observed or predicted to exist on a number of supporting substrates. Herein the atomic and electronic structures of five distinct epitaxial silicene morphologies on Ag(111) are examined through the complementary techniques of density functional theory and soft X‐ray spectroscopy at the Si L2,3 edge. Hybridization with the Ag(111) substrate is shown to cause these silicene monolayers to become strongly metallic, and the specific electronic interactions that are responsible for this metallic nature are determined. The results imply that epitaxial silicene on Ag(111) does not possess the Dirac cone electronic structure that is characteristic of freestanding silicene and graphene sheets.  相似文献   
10.
Atomically precise engineering of the position of molecular adsorbates on surfaces of 2D materials is key to their development in applications ranging from catalysis to single‐molecule spintronics. Here, stable room‐temperature templating of individual molecules with localized electronic states on the surface of a locally reactive 2D material, silicene grown on ZrB2, is demonstrated. Using a combination of scanning tunneling microscopy and density functional theory, it is shown that the binding of iron phthalocyanine (FePc) molecules is mediated via the strong chemisorption of the central Fe atom to the sp3‐like dangling bond of Si atoms in the linear silicene domain boundaries. Since the planar Pc ligand couples to the Fe atom mostly through the in‐plane d orbitals, localized electronic states resembling those of the free molecule can be resolved. Furthermore, rotation of the molecule is restrained because of charge rearrangement induced by the bonding. These results highlight how nanoscale changes can induce reactivity in 2D materials, which can provide unique surface interactions for enabling novel forms of guided molecular assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号