首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   115篇
机械仪表   1篇
轻工业   6篇
无线电   3篇
一般工业技术   5篇
  2023年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   8篇
  2011年   8篇
  2010年   5篇
  2009年   8篇
  2008年   10篇
  2007年   6篇
  2006年   12篇
  2005年   10篇
  2004年   10篇
  2003年   19篇
  2002年   5篇
  2001年   3篇
  1999年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
1.
Soluble and processable conductive copolymers of silicone tegomers and pyrrole were developed. This was easily accomplished by the oxidative polymerization of pyrrole monomer by Ce(IV) salt in the presence of silicone tegomers with hydroxyl chain ends. The resulting copolymers were soluble in dimethylformamide. The products were characterized by Fourier transform infrared, 1H‐NMR, and four‐point probe conductivity, and their surface properties were investigated with contact‐angle measurements. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2896–2901, 2003  相似文献   
2.
Silicone rubber (SR) foams were prepared by the peroxide curing of a silicone compound with 2,4‐dichlorobenzoyl peroxide (DCBP), di‐t‐butyl peroxide (DTBP), or 2,5‐dimethyl‐2,5‐di(t‐butylperoxy) hexane (DBPH) in the presence of 2,2′‐azobisisobutyronitrile (AIBN) as a blowing agent. The cells were formed in the foam as a result of nitrogen produced by the decomposition of AIBN during the foaming process. The cell size, hardness, and tensile properties of the SR foams were examined as a function of the peroxide concentration. When the peroxide concentration increased, the hardness and tensile strength of the SR foams increased, whereas the cell size and elongation at break decreased. The antibacterial activity of the prepared foams was also evaluated via their effects on Staphylococcus aureus and Escherichia coli. The peroxide‐cured SR foams had antibacterial activity because a toxic residue was generated by the peroxide decomposition. The foam prepared by the AIBN/DCBP system showed more antibacterial activity than the AIBN/DBPH and AIBN/DTBP ones. However, after postcuring at 250°C for 2 h, the antibacterial activity of the SR foams significantly decreased. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
3.
Polyamide/epoxysilane (coupling agent) composites were reacted with poly(dimethylsiloxane) (PDMS), a condensation product of diethoxydimethylsilane (DEDMS), by a sol–gel process. Polyamide–PDMS nanocomposites were obtained. The existence of the condensation product of DEDMS and the reaction between the epoxy group and the polyamide were confirmed with Fourier transform infrared, attenuated total reflection, and wide‐scanning X‐ray photoelectron spectroscopy. Atomic force microscopy and contact‐angle measurements showed that the surface properties of polyamide were greatly improved by the addition of PDMS. The pyrolysis temperature of polyamide with PDMS was approximately 400°C, and the pyrolysis temperature was similar to that of pure polyamide. Also, the char contents increased with the addition of PDMS. The glass‐transition temperature of polyamide with or without PDMS was approximately 140°C according to differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1947–1955, 2004  相似文献   
4.
The kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black was investigated by thermogravimetric analysis in a flowing nitrogen atmosphere at a heating rate of 5°C/min. The rate parameters were evaluated by the method of Freeman–Carroll. The results show that the thermal degradation of conductive silicone rubber begins at about 350°C and ends at about 600°C. The thermal degradation is multistage, in which zero‐order reactions are principal. The kinetics of the thermal degradation of conductive silicone rubber has relevance to its loading of conductive carbon black. The activation energies are temperature‐sensitive and their sensitivity to temperature becomes weak as temperature increases. In addition, the conductive silicone rubber filled with conductive carbon black has better thermal stability than that of silicone rubber without any fillers. Also, conductive silicone rubber filled with conductive carbon black has better thermal stability than that of silicone rubber filled with the same amount of silica. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1548–1554, 2003  相似文献   
5.
This paper reviews the optimum synthetic and semi-synthetic lubricants for various types of compressors and gases being compressed. Several applications are given involving centrifugal, rotary, and reciprocating compressors. Gases include air, refrigerant, natural and other hydrocarbons, chemical processing and industrial. Included also are food grade air compressor applications. In addition, microlube systems for once-through cylinder lubrication of large reciprocating compressors designed to minimize gas contamination are also described.  相似文献   
6.
A new silicone containing macromonomer, 4‐(methacrylamido) phenoxy polymethylhydrosiloxane (4‐MPMHS) with a vinyl group, was successfully synthesized. Then poly (silicone‐co‐styrene‐co‐butylacrylate) with montmorillonite, P (Si‐co‐St‐co‐BA) with MMT nanocomposite emulsion was prepared by in situ intercalative emulsion polymerization of styrene (St), butyl acrylate (BA), and 4‐MPMHS, in the presence of organic modified montmorillonite (OMMT) with different OMMT contents (0, 0.5, 1.0, 1.5, and 2 wt %). Potassium persulphate (KPS) was used as an initiator and sodium lauryl sulfoacetate (SLSA) and nonyl phenol ethylene oxide—40 U (NP‐40) were used as anionic and nonionic emulsifiers, respectively. The resulting macromonomer was characterized by elemental analysis, Fourier transformer infrared (FT‐IR), proton (1H NMR), and carbon (13C NMR) nuclear magnetic resonance spectroscopes. The OMMT was characterized by FT‐IR and X‐ray diffraction (XRD). The nanocomposite emulsions were characterized by using Fourier Transform infrared spectroscopy (FT‐IR), laser light scattering, and surface tension method. Thermal properties of the copolymers were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and then the effects of OMMT percent on the water absorption ratio and drying speed were examined. Results showed that OMMT could improve the properties of emulsion. In other words, the properties of nanocomposite emulsions were better when compared with those of the silicone‐acrylate emulsion. The property of nanocomposite emulsion containing 1 wt % OMMT was the best one, and the following advantages were obtained: smaller particle size, faster drying speed, smaller surface tension, and improved water resistance by the incorporation of OMMT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
7.
The release process of a water soluble, model drug (proxyphylline) with small, yet not negligible osmotic action, from silicone rubber (SR) matrices is presented. The kinetics of release for different initial loads of the drug is supplemented by measurements of the kinetics of the concurrent water uptake. To gain insight on the relevant non‐Fickian transport mechanisms, the morphology, the diffusion, and sorption properties of the drug‐depleted matrices are studied. In addition, both drug‐loaded and drug‐depleted matrices are characterized with respect to their mechanical properties. The combined information derived from these techniques support—at least below the percolation threshold—the operation of a release mechanism occurring through a uniformly swollen polymer matrix without formation of cracks, in contrast to the release observed in the case of water soluble, inorganic salts where release takes place through a network of microscopic cracks. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
8.
氟硅油高温性能的研究   总被引:6,自引:1,他引:5  
对氟硅油的高温性能,包括热氧化安定性、粘度-温度性能、高温蒸发损失、与橡胶的相容性、润滑性等进行了研究,并同国外同类产品和国内的酯类航空润滑油进行了比较。研究结果表明,氟硅油的热氧化安定性明显优于酯类油。通过加入合适的抗氧剂,其热氧化安定性还可明显提高。  相似文献   
9.
Different silicone baking moulds (37 samples) were characterized with respect to potential migrating substances using 1H-NMR, RP-HPLC–UV/ELSD and GC techniques. In all cases cyclic organosiloxane oligomers with the formula [Si(CH3)2–O] n were identified (n = 6 … 50). Additionally, linear, partly hydroxyl-terminated organosiloxanes HO–[Si(CH3)2–O] n –H (n = 7 … 20) were found in 13 samples. No substances other than siloxanes could be detected, meaning the migrants mainly consist of organopolysiloxanes. Based on this knowledge, a 1H-NMR quantification method for siloxanes was established for the analysis of both simulants and foodstuffs. Validation of the 1H-NMR method gave suitable performance characteristics: limit of detection 8.7 mg kg–1 oil, coefficient of variation 7.8% (at a level of 1.0 mg kg–1 food). Migration studies were carried out with simulants (olive oil, isooctane, ethanol (95%), Tenax) as well as preparation of different cakes. From the 1st to 10th experiment, siloxane migration into cakes only slightly decreased, with a significant dependence on fat content. Migration never exceeded a level of 21 mg kg–1 (3 mg dm–2) and was, therefore, well below the overall migration limit of 60 mg kg–1 (10 mg dm–2). However, migration behaviour into simulants differed completely from these results.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号