首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105662篇
  免费   10089篇
  国内免费   5730篇
电工技术   7386篇
技术理论   1篇
综合类   8665篇
化学工业   13809篇
金属工艺   4856篇
机械仪表   8363篇
建筑科学   14879篇
矿业工程   5740篇
能源动力   6218篇
轻工业   8564篇
水利工程   2934篇
石油天然气   9764篇
武器工业   1351篇
无线电   4883篇
一般工业技术   9349篇
冶金工业   4521篇
原子能技术   1158篇
自动化技术   9040篇
  2024年   455篇
  2023年   1496篇
  2022年   3086篇
  2021年   3762篇
  2020年   3893篇
  2019年   3238篇
  2018年   3041篇
  2017年   3718篇
  2016年   3990篇
  2015年   4155篇
  2014年   6881篇
  2013年   6674篇
  2012年   8219篇
  2011年   8543篇
  2010年   6184篇
  2009年   6110篇
  2008年   5320篇
  2007年   6766篇
  2006年   6169篇
  2005年   5091篇
  2004年   4405篇
  2003年   3636篇
  2002年   3032篇
  2001年   2588篇
  2000年   2106篇
  1999年   1700篇
  1998年   1309篇
  1997年   1114篇
  1996年   940篇
  1995年   774篇
  1994年   648篇
  1993年   391篇
  1992年   333篇
  1991年   289篇
  1990年   225篇
  1989年   186篇
  1988年   129篇
  1987年   109篇
  1986年   68篇
  1985年   86篇
  1984年   62篇
  1983年   46篇
  1982年   49篇
  1981年   34篇
  1980年   71篇
  1979年   33篇
  1964年   32篇
  1963年   28篇
  1959年   31篇
  1955年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this work, assembly pressure and flow channel size on proton exchange membrane fuel cell performance are optimized by means of a multi-model. Based on stress-strain data of the SGL-22BB GDL obtained from its initial compression experiments, Young's modulus with different ranges of assembly pressure fits well through modeling. A mechanical model is established to analyze influences of assembly pressure on various gas diffusion layer parameters. Moreover, a CFD calculation model with different assembly pressures, channel width, and channel depth are established to calculate PEMFC performances. Furthermore, a BP neural network model is utilized to explore optimal combination of assembly pressure, channel width and channel depth. Finally, the CFD model is used to validate effect of size optimization on PEMFC performance. Results indicate that gap change of GDL below bipolar ribs is more remarkable than that below channels under action of the assembly pressure, making liquid water easily transported under high porosity, which is conducive to liquid water to the channels, reduces the accumulation of liquid water under the ribs, and enhances water removal in the PEMFC. Affected by the assembly force, change of GDL porosity affects its diffusion rate, permeability and other parameters, which is not conducive to mass transfer in GDL. Optimizing the depth and different dimensions through width of the flow field can effectively compensate for this effect. Therefore, the PEMFC performance can be enhanced through the comprehensive optimization of the assembly force, flow channel width and flow channel depth. The optimal parameter is obtained when assembly pressure, channel width and channel depth are set as 0.6 MPa, 0.8 mm, and 0.8 mm, respectively. The parameter optimization enhances the mass transfer, impedance, and electrochemical characteristics of PEMFC. Besides, it effectively enhances the quality transfer efficiency inside GDL, prevents flooding, and reduces concentration loss and ohmic loss.  相似文献   
2.
3.
Ripe carambolas are hard to store and transport, while freeze-dried ones are easy to store. However, its long production time leads to higher costs. This study shows that high hydrostatic pressure (HHP) treatment could shorten the freeze-drying time of carambola slices. After HHP treatment (25–250 MPa), the drying time of the fresh sample can be shortened by 33.3–44.4% and the distribution of water and pigment in tissues is much uniform. With the increment of the pressure, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging rate are increased. At 250 MPa, the total phenolic content (TPC) increased from 11.34 to 13.36 mg GAE g−1, and the total flavonoid content (TFC) of the control sample was increased from 10.77 to 12.73 mg RE g−1. Compared with the untreated sample, HHP treatment can enhance the flavour and shorten the freeze-drying time. This work guides the application of HHP technology for drying food processing.  相似文献   
4.
The effects of high-pressure-modified soy 11S globulin (0.1, 200, and 400 MPa) on the gel properties, water-holding capacity, and water mobility of pork batter were investigated. The high-pressure-modified soy 11S globulin significantly increased (P < 0.05) the emulsion stability, cooking yield, hardness, springiness, chewiness, resilience, cohesiveness, the a* and b* values, and the G′ and G′′ values of pork batter at 80 °C, compared with those of 0.1 MPa-modified globulin. In contrast, the centrifugal loss and initial relaxation time of T2b, T21, and T22 significantly decreased (P < 0.05). Meanwhile, the microstructure was denser, and the voids were smaller and more uniform compared with those of 0.1 MPa-modified globulin. In addition, the sample with 11S globulin modified at 400 MPa had the best water-holding capacity, gel structure, and gel properties among the samples. Overall, the use of high-pressure-modified soy 11S globulin improved the gel properties and water-holding capacity of pork batter, especially under 400 MPa.  相似文献   
5.
A Pitot tube is a popular device used for the measurements of flow fields. To control the accuracy of the Pitot tube coefficient, the international standard organization (ISO), the American Society for Testing and Materials (ASTM), and the Japanese Industrial Standards (JIS) issued guidelines that recommended the shape and working conditions of these devices. However, many Pitot tubes on the market do not follow these guidelines. In the present study, various types of Pitot tubes in the market were tested at the National Metrology Institute of Japan (NMIJ) to determine the effects of the geometry and flow characteristics. The results revealed certain limitations in the existing ISO and JIS standards, specifically with regard to the recommended design parameters of the AMCA Pitot tube, the reference coefficient value for the JIS Pitot tube, and the redefinition and limitation of Reynolds numbers pertaining to Pitot tube working conditions.  相似文献   
6.
目的建立超高效液相色谱-串联质谱法同时测定糕点中6种常用合成甜味剂的分析方法。方法选用超纯水作为提取溶剂,涡旋和超声提取后,低温离心,取部分上清液加入正己烷除脂,Waters Atlantis■T3色谱柱、甲醇-5 mmol/L甲酸铵(含0.1%甲酸)作为流动相、亲水亲脂平衡型固相萃取柱HLB(hydrophile-lipophile balance)净化。结果6种甜味剂在质量浓度为10~200 ng/mL的曲线范围内呈良好线性关系,相关系数r均大于0.999,平均加标回收率在85.0%-98.2%之间,相对平均偏差(relative standard deviation,RSD)为1.3%~6.7%。结论该方法具有前处理简单、灵敏度高、检测速度快等优点,适合糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜、纽甜的检测,但不适用于安赛蜜的检测。  相似文献   
7.
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL−1. Headspace solid phase microextraction associated to gas chromatography–mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.  相似文献   
8.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
9.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
10.
This paper carefully evaluates the electrocatalytic activity of Sr2FeMo0.5Mn0.5O6 (SFMM) double perovskite as a candidate to substitute the state-of-the-art Ni/YSZ fuel electrode. The electrochemical performance of a 40% SFMM/CGO composite electrode was studied in CO/CO2 and H2 with different oxygen partial pressure. Two different cell configurations are prepared at a relatively low temperature of 800 °C to increase the electrochemically active surface area. The cell was supported with a 150 μm 10Sc1CeSZ electrolyte in the first configuration. The cell in the second configuration was made by applying a 400 nm thin 8YSZ layer on 150 μm CGO electrolyte to improve the electrolyte ionic conductivity. Improving catalytic activity with increasing oxygen partial pressure is a key characteristic of the developed electrode. The polarization resistance of about 0.34 and 0.56 Ω cm2 at 750 °C in 3%H2O + H2 and 60% CO/CO2 makes this electrode a promising candidate for SOCs application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号