首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2892篇
  免费   730篇
  国内免费   152篇
电工技术   352篇
综合类   90篇
化学工业   823篇
金属工艺   185篇
机械仪表   40篇
建筑科学   3篇
矿业工程   11篇
能源动力   90篇
轻工业   5篇
水利工程   1篇
石油天然气   6篇
武器工业   5篇
无线电   579篇
一般工业技术   1427篇
冶金工业   33篇
原子能技术   75篇
自动化技术   49篇
  2024年   9篇
  2023年   94篇
  2022年   57篇
  2021年   165篇
  2020年   164篇
  2019年   142篇
  2018年   170篇
  2017年   172篇
  2016年   208篇
  2015年   224篇
  2014年   263篇
  2013年   245篇
  2012年   189篇
  2011年   224篇
  2010年   178篇
  2009年   198篇
  2008年   207篇
  2007年   153篇
  2006年   115篇
  2005年   97篇
  2004年   59篇
  2003年   44篇
  2002年   52篇
  2001年   29篇
  2000年   30篇
  1999年   25篇
  1998年   23篇
  1997年   26篇
  1996年   28篇
  1995年   30篇
  1994年   34篇
  1993年   21篇
  1992年   19篇
  1991年   25篇
  1990年   8篇
  1989年   9篇
  1988年   6篇
  1987年   2篇
  1985年   3篇
  1984年   9篇
  1983年   9篇
  1982年   7篇
  1975年   1篇
  1951年   1篇
排序方式: 共有3774条查询结果,搜索用时 15 毫秒
1.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
2.
Vertical arrays of nanostructures (NSs) are emerging as promising platforms for probing and manipulating live mammalian cells. The broad range of applications requires different types of interfaces, but cell settling on NS arrays is not yet fully controlled and understood. Cells are both seen to deform completely into NS arrays and to stay suspended like tiny fakirs, which have hitherto been explained with differences in NS spacing or density. Here, a better understanding of this phenomenon is provided by using a model that takes into account the extreme membrane deformation needed for a cell to settle into a NS array. It is shown that, in addition to the NS density, cell settling depends strongly on the dimensions of the single NS, and that the settling can be predicted for a given NS array geometry. The predictive power of the model is confirmed by experiments and good agreement with cases from the literature. Furthermore, the influence of cell‐related parameters is evaluated theoretically and a generic method of tuning cell settling through surface coating is demonstrated experimentally. These findings allow a more rational design of NS arrays for the numerous exciting biological applications where the mode of cell settling is crucial.  相似文献   
3.
In the present work blends of polystyrene (PS) with sepiolites have been produced using a melt extrusion process. The dispersion degree of the sepiolites in the PS has been analyzed by dynamic shear rheology and X-ray micro-computed tomography. Sepiolites treated with quaternary ammonium salts (O-QASEP) are better dispersed in the PS matrix than natural sepiolites (N-SEP) or sepiolites organo-modified with silane groups (O-SGSEP). A percolated network is obtained when using 6.0 wt% of O-QASEP, 8.0 wt% of N-SEP and 10.0 wt% of O-SGSEP. It has been shown that multiple extrusion processes have a negative effect on the polymer architecture. They produce a reduction in the length of the polymeric chains, and they do not lead to a better dispersion of the particles in the polymer matrix. Foams have been produced using a gas dissolution foaming process, where a strong effect of the dispersion degree on the cellular structure of the different foams was found. The effects on the cellular structure obtained by using different types of sepiolites, different contents of sepiolites and different extrusion conditions have been analyzed. The foams produced with the formulations containing O-QASEP present the lowest cell size and the most homogeneous cellular structures.  相似文献   
4.
《Ceramics International》2022,48(24):36238-36248
Cf/SiC composite is an excellent structural and functional material, silicon carbide nanowires (SiCnws) are not only a toughening material but also a great application in the field of microwave absorption. In this study, SiCnws are grown on the surface of carbon fiber (Cf) by polymer impregnation and pyrolysis, and the SiC matrix was prepared by chemical vapor osmosis method. The SiCnws are introduced to enhance the mechanical and microwave absorption properties simultaneously. After 3 impregnations, the flexural strength of the composite was 107.35 ± 10 MPa. When the thickness is 1.86 mm, the minimum reflection loss value is ?41.08 dB, and the effective absorption bandwidth (RL ≤ ?10 dB) is 3.86 GHz. Furthermore, the microwave absorption mechanism of the material is discussed. This work provides a new method to prepare lightweight, stable and high-performance microwave absorption materials, and these materials are expected to be used in high temperature environments.  相似文献   
5.
In this work, the hydrothermally-synthesized sodium niobate nanowires were used to decompose Rhodamine B dye solution through the piezo-catalytic effect. With the sodium niobate catalyst, a high piezo-catalytic degradation ratio of ~80% was achieved under the excitation of vibration for the Rhodamine B dye solution (~5?mg/l). These active species in the catalytic process, hydroxyl radicals and superoxide radicals with the strong oxidation ability, were also observed, which confirmed the key role of piezoelectric effect for piezo-catalysis. The piezo-catalysis of sodium niobate nanowires provides a high-efficiency and reusable tool in application in depredating the dye wastewater.  相似文献   
6.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   
7.
8.
Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it. PACS: 03.67.-a, 03.65.Yz, 85.25.-j, 85.35.Gv  相似文献   
9.
Multifilament Ag-sheathed BiPbSrCaCuO (2223) superconducting tapes containing 49 filaments were fabricated by the powder-in-tube route and the roll-anneal process. The transport critical current densityJ c was 1.3×104 A cm–2 at 77 K and 7×104 A cm–2 at 4.2 K in self-field. A 12-m-long tape was used to construct superconducting solenoids (50, 28, and 14 mm internal diameters) generating dc fields 380–1070 G at 4.2 K. Measurements of the variation ofJ c with field (0–1.6 T) and bend strain (0–5%) are used to explain the performance of the solenoids. The critical bend strain of tapes was about 1.5%.  相似文献   
10.
The nature of pairing mechanism as well as transition temperature of yttrium cuprates is discussed using the strong coupling theory. An interaction potential has been developed for the layered structure with two conducting CuO2(a–b) layers in a unit cell. The interaction potential properly takes care of electron-electron, electron-phonon and electron-plasmon interactions. Furthermore, the electron-phonon coupling parameter (λ), the modified Coulomb repulsive parameter (μ*) and the 2D acoustic phonon (plasmon) energy as a function of oxygen deficiency is worked out. Finally, the superconducting transition temperature (T c) is then evaluated by using these coupling parameters and obtainedT c = 95(92)K for Y(Yb)Ba2Cu3O7−δ superconductors withδ = 0·0. The model parameters estimated from the layered structure approach are consistent with the strong coupling theory. The result deduced on the variation ofT c withδ are in fair agreement with the earlier reported data on yttrium cuprates. The analysis of the above results are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号