首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
化学工业   6篇
轻工业   2篇
无线电   1篇
一般工业技术   1篇
  2022年   2篇
  2021年   3篇
  2013年   2篇
  2011年   2篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Recombinant buckwheat trypsin inhibitor (rBTI) was studied to evaluate if it could enter cancer cells and to determine the mechanism. Fluorescein isothiocyanate-labelled buckwheat trypsin inhibitor (FITC-BTI) entered Hep G2 cells in a concentration-dependent manner. FITC-BTI colocalised with labelled transferrin (Tf) in the punctate structure, implying that rBTI enters Hep G2 cells by clathrin-dependent endocytosis. Incubation of Hep G2 cells with different chemical inhibitors abolished diffuse, but not punctate fluorescence, thus indicating that membrane potential plays a critical role in this process. Impairment of clathrin-mediated endocytosis by RNAi with clathrin heavy chain greatly reduced or completely abolished both diffuse and punctate fluorescence, further supporting a theory of a single route of endocytosis. Consistent with our working hypothesis, Hep G2 cells which were arrested in the M phase did not show any vesicular or diffuse FITC-BTI. We conclude from these results that both endocytosis and membrane potential are required for rBTI entry into Hep G2 cells.  相似文献   
2.
Angiogenesis is a process associated with the migration and proliferation of endothelial cells (EC) to form new blood vessels. It is involved in various physiological and pathophysiological conditions and is controlled by a wide range of proangiogenic and antiangiogenic molecules. The plasminogen activator–plasmin system plays a major role in the extracellular matrix remodeling process necessary for angiogenesis. Urokinase/tissue-type plasminogen activators (uPA/tPA) convert plasminogen into the active enzyme plasmin, which in turn activates matrix metalloproteinases and degrades the extracellular matrix releasing growth factors and proangiogenic molecules such as the vascular endothelial growth factor (VEGF-A). The plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of uPA and tPA, thereby an inhibitor of pericellular proteolysis and intravascular fibrinolysis, respectively. Paradoxically, PAI-1, which is expressed by EC during angiogenesis, is elevated in several cancers and is found to promote angiogenesis by regulating plasmin-mediated proteolysis and by promoting cellular migration through vitronectin. The urokinase-type plasminogen activator receptor (uPAR) also induces EC cellular migration during angiogenesis via interacting with signaling partners. Understanding the molecular functions of the plasminogen activator plasmin system and targeting angiogenesis via blocking serine proteases or their interactions with other molecules is one of the major therapeutic strategies scientists have been attracted to in controlling tumor growth and other pathological conditions characterized by neovascularization.  相似文献   
3.
Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from “bench to bedside” due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.  相似文献   
4.
尿激酶型纤溶酶原激活系统是纤溶系统的重要组成部分,它通过水解细胞外间质,参与组织改造和细胞迁移,在肿瘤细胞的侵袭和转移中发挥作用;讨论了uPA系统的结构、作用机理及与子宫内膜癌的关系,旨在为子宫内膜癌的诊断和治疗提供新方法。  相似文献   
5.
目的探讨乌司他丁(Ulinastatin,UTI)和泰索帝(Taxotere,TXT)对体外培养的人乳腺癌细胞MDA-MB-231中u-PA、uPAR、ERK表达的影响。方法将MDA-MB-231(ER-)细胞分为4组:UTI组(UTI 800 U/ml)、TXT组(TXT 3.7μg/ml)、UTI+TXT组(UTI 800 U/ml+TXT 3.7μg/ml)、对照组(等量生理盐水)。给药后24 h,分别采用荧光定量RT-PCR检测各组细胞中uPAuPAR、ERK基因mRNA的水平,Western blot法检测各组细胞中uPAuPAR、p-ERK1/2蛋白的表达水平。结果 UTI组和UTI+TXT组MDA-MB-231(ER-)细胞中uPAuPAR基因mRNA的水平均明显低于对照组(P<0.05),而TXT组中二者的表达水平均明显高于对照组(P<0.01),各组间ERK基因mRNA的水平差异无统计学意义(P>0.05);UTI组和UTI+TXT组中uPAuPAR和p-ERK1/2蛋白的表达水平均明显低于对照组(P<0.01),而TXT组中3种蛋白的表达水平均明显高于对照组(P<0.05)。结论UTI可抑制MDA-MB-231细胞中uPAuPAR、p-ERK的表达,而TXT可上调三者的表达。  相似文献   
6.
The K+-sparing diuretic amiloride shows off-target anti-cancer effects in multiple rodent models. These effects arise from the inhibition of two distinct cancer targets: the trypsin-like serine protease urokinase-type plasminogen activator (uPA), a cell-surface mediator of matrix degradation and tumor cell invasiveness, and the sodium-hydrogen exchanger isoform-1 (NHE1), a central regulator of transmembrane pH that supports carcinogenic progression. In this study, we co-screened our library of 5- and 6-substituted amilorides against these two targets, aiming to identify single-target selective and dual-targeting inhibitors for use as complementary pharmacological probes. Closely related analogs substituted at the 6-position with pyrimidines were identified as dual-targeting (pyrimidine 24 uPA IC50 = 175 nM, NHE1 IC50 = 266 nM, uPA selectivity ratio = 1.5) and uPA-selective (methoxypyrimidine 26 uPA IC50 = 86 nM, NHE1 IC50 = 12,290 nM, uPA selectivity ratio = 143) inhibitors, while high NHE1 potency and selectivity was seen with 5-morpholino (29 NHE1 IC50 = 129 nM, uPA IC50 = 10,949 nM; NHE1 selectivity ratio = 85) and 5-(1,4-oxazepine) (30 NHE1 IC50 = 85 nM, uPA IC50 = 5715 nM; NHE1 selectivity ratio = 67) analogs. Together, these amilorides comprise a new toolkit of chemotype-matched, non-cytotoxic probes for dissecting the pharmacological effects of selective uPA and NHE1 inhibition versus dual-uPA/NHE1 inhibition.  相似文献   
7.
Hepatocellular carcinoma (HCC) frequently shows early invasion into blood vessels as well as intrahepatic metastasis. Innovations of novel small-molecule agents to block HCC invasion and subsequent metastasis are urgently needed. Moscatilin is a bibenzyl derivative extracted from the stems of a traditional Chinese medicine, orchid Dendrobium loddigesii. Although moscatilin has been reported to suppress tumor angiogenesis and growth, the anti-metastatic property of moscatilin has not been elucidated. The present results revealed that moscatilin inhibited metastatic behavior of HCC cells without cytotoxic fashion in highly invasive human HCC cell lines. Furthermore, moscatilin significantly suppressed the activity of urokinase plasminogen activator (uPA), but not matrix metalloproteinase (MMP)-2 and MMP-9. Interestingly, moscatilin-suppressed uPA activity was through down-regulation the protein level of uPA, and did not impair the uPA receptor and uPA inhibitory molecule (PAI-1) expressions. Meanwhile, the mRNA expression of uPA was inhibited via moscatilin in a concentration-dependent manner. In addition, the expression of phosphorylated Akt, rather than ERK1/2, was inhibited by moscatilin treatment. The expression of phosphor-IκBα, and -p65, as well as κB-luciferase activity were also repressed after moscatilin treatment. Transfection of constitutively active Akt (Myr-Akt) obviously restored the moscatilin-inhibited the activation of NF-κB and uPA, and cancer invasion in HCC cells. Taken together, these results suggest that moscatilin impedes HCC invasion and uPA expression through the Akt/NF-κB signaling pathway. Moscatilin might serve as a potential anti-metastatic agent against the disease progression of human HCC.  相似文献   
8.
目的:研究Hedgehog信号转导通路对人乳腺癌细胞MDA—MB-231c—jun、uPA表达的影响和作用机制,认识其在侵袭转移中的意义。方法:应用Hedgehog信号通路抑制剂Cyclopamine作用人乳腺癌细胞MDA—MB-231,Transwell小室进行侵袭迁移实验;Western blotting检测P—c...  相似文献   
9.
Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, inhibits angiogenesis but the molecular mechanisms that underlie this effect are not known. In this study, under hypoxic conditions (1% O2), we examined the effect of PEITC on the intracellular level of the hypoxia inducible factor (HIF-1α) and extracellular level of the vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that PEITC suppressed the HIF-1α accumulation during hypoxia in human glioma U87, human prostate cancer DU145, colon cancer HCT116, liver cancer HepG2, and breast cancer SkBr3 cells. PEITC treatment also significantly reduced the hypoxia-induced secretion of VEGF. Suppression of HIF-1α accumulation during treatment with PEITC in hypoxia was related to PI3K and MAPK pathways. Taken together, these results suggest that PEITC inhibits the HIF-1α expression through inhibiting the PI3K and MAPK signalling pathway and provide a new insight into a potential mechanism of the anticancer properties of PEITC.  相似文献   
10.
Urokinase-type plasminogen activator is widely discussed as a marker for cancer prognosis and diagnosis and as a target for cancer therapies. Together with its receptor, uPA plays an important role in tumorigenesis, tumor progression and metastasis. In the present study, systematic evolution of ligands by exponential enrichment (SELEX) was used to select single-stranded DNA aptamers targeting different forms of human uPA. Selected aptamers allowed the distinction between HMW-uPA and LMW-uPA, and therefore, presumably, have different binding regions. Here, uPAapt-02-FR showed highly affine binding with a KD of 0.7 nM for HMW-uPA and 21 nM for LMW-uPA and was also able to bind to pro-uPA with a KD of 14 nM. Furthermore, no cross-reactivity to mouse uPA or tissue-type plasminogen activator (tPA) was measured, demonstrating high specificity. Suppression of the catalytic activity of uPA and inhibition of uPAR-binding could be demonstrated through binding with different aptamers and several of their truncated variants. Since RNA aptamers are already known to inhibit uPA-uPAR binding and other pathological functions of the uPA system, these aptamers represent a novel, promising tool not only for detection of uPA but also for interfering with the pathological functions of the uPA system by additionally inhibiting uPA activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号