首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
建筑科学   2篇
一般工业技术   11篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有13条查询结果,搜索用时 16 毫秒
1.
Use of a Scratch Pendulum for Quantification of the Abrasive Behaviour in Machining Stones The machining of natural stones is one of the most demanding applications of today´s cutting technique. Modern stone processing is based on grinding and it is usually done with diamond based tools. The achievable material removal rate is process dependant and mainly determined by tool speed and infeed. The tool durability depends on the adjustment of the parameters to the wear resistance of the processed material. This resistance is a material characteristic value. Using a scratch pendulum, it is possible to determine the energy needed to create a defined scratch and relate it to the induced material loss and the chipped material volume. The analysis provides a value which, after verification by industrial production data, can be seen as characteristic for the material. It therefore enables the quantification of a material dependant scratch resistance.  相似文献   
2.
Cast Fe–10Cr–1.5B–2Al alloy was quenched at different temperatures. The effects of quenching temperature on microstructure and hardness and wear‐resistance of Fe–10Cr–1.5B–2.0Al alloy were investigated by means of the optical microscopy, the scanning electron microscope, X‐ray diffraction, energy dispersive spectrometer, Vickers hardness and Rockwell hardness tester, and the MM‐200 block‐on‐ring wear testing machine under dry friction condition. The results indicate that the as‐cast microstructure of Fe–10Cr–1.5B–2.0Al alloy consists of ferrite, pearlite and netlike eutectics which are distributed in the grain boundary. The eutectics mainly include herringbone M2B and chrysanthemum M7(C, B)3. The matrix gradually turns into single martensite with the increase of the quenching temperature. The type of borocarbides has no obvious change after quenching. The netlike boride almost totally fractures and transforms from the fish‐bone structure to the graininess. There is some retained austenite in the quenched structures when the quenching temperature is more than 1100 °C. When the quenching temperature is in a range of 1000 °C to 1100 °C, the hardness and wear resistance show a sharp increase with an increase of temperature, and show a slight decrease after surpassing 1100 °C.  相似文献   
3.
High‐boron high‐speed steel (HSS) is a cheap roll material. In the paper, the authors research the effect of heat treatment on the microstructure and properties of high‐boron high‐speed steel HSS roll containing 0.54% C, 1.96% B, 3.82% W, 7.06% Mo, 5.23% Cr and 2.62% Al by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X‐ray diffraction (XRD) and hardness test. The results showed that as‐cast structure of boron‐bearing high‐speed steel HSS consisted of martensite, pearlite, M2(B, C), M3(B, C) and M23(B, C)6 type borocarbides. After quenching, the matrix transformed into the lath martensite, and M3(B, C) dissolved into the matrix. When quenching temperature is lower than 1050°C, the hardness is increased with the increase of quenching temperature under oil cooling, while quenching temperature excels 1100°C, the hardness will decrease with the increase of quenching temperature. Under the condition of salt bath and air cooling, the effect of quenching temperature on the hardness is similar to the above law, but the quenching temperature obtaining the highest hardness is higher than that of oil cooling. The highest hardness is obtained while tempering at 525°C. The hardness of high‐boron high‐speed steel HSS roll is 66.5 HRC, and its impact toughness excels 13.1 J/cm2. Using in pre‐finishing stands of high‐speed hot wire‐rod rolling mill, the wear rate of high‐boron HSS rolls is 0.26 mm/one thousand tons steel. However the manufacturing cost of high‐boron HSS rolls is obviously lower than that of powder metallurgy hard alloy rolls, it is only 28% of that of powder metallurgy (PM) hard alloy rolls.  相似文献   
4.
Laser cladding has been applied to fabricate in‐situ vanadium carbide phase on the surface of C45E (according to ISO 683‐1:2016 (E)) using a preplaced powder consisting of 55 wt.% Ni35 and 45 wt.% (FeV50 + graphite), meanwhile, pure Ni35 has also been cladded for comparison. The microstructure and phases analysis were carried out by means of optical microscope, X‐ray diffractometer, scanning electron microscope, energy dispersive spectroscopy, and electron probe microanalysis. The microhardness and wear resistance were tested through the microhardness tester and ring‐on‐block wear tester respectively. The results show that there are many kinds of microstructure such as cellular and columnar crystals for the pure Ni35 cladding coating, and lots of cellular or dendritic vanadium carbide and reticular Cr2Fe14C3 phases distribute over the Fe3Ni2 matrix in the coating cladded with 55 wt.% Ni35 and 45 wt.% (FeV50 + graphite). Vanadium carbide phase is uniformly distributed and bonded metallurgically to the matrix very well, which increases the hardness and wear resistance. The wear resistance of coating cladded with 55 wt. % Ni35 and 45 wt. % (FeV50 + graphite) alloy powder is 5.16 times as high as C45E, and is higher 139.7% than that of the pure Ni35 clad layer.  相似文献   
5.
Bainitic cast steel is a kind of wear resistant material which has high strength and toughness, and can usually be obtained by isothermal quenching or molybdenum alloying. However, isothermal quenching has lower production efficiency and molybdenum alloying has higher production cost. In this paper, according to the characteristics that manganese and boron elements delayed the pearlitic transformation, the authors developed a new type of self‐hardening bainitic cast steel in which manganese and boron were main alloy elements and a small amount of titanium, nitrogen, calcium, barium and yttrium elements were also added in the steel that could refine and purify the solidification structure of steel. On this basis, the author studied the effect of tempering treatment on microstructures, mechanical properties and wear resistance of bainitic cast steel. The results showed that impact toughness of bainitic cast steel increased ceaselessly with the increase of tempering temperature, and there was tempering brittleness while tempering from 450°C–500°C. Moreover, the hardness of bainitic cast steel decreased with the increase of tempering temperature, and hardness decreased slowly and maintained at 55HRC or above when tempering temperature was lower than 300°C. Under the condition of two‐body pin‐on‐disc wear, the wear resistance of bainitic cast steel decreased with the increase of tempering temperature, but bainitic cast steel tempering at 300°C had excellent wear resistance in the condition of impact wear. In the practical use, the bucket teeth of excavator and the hammer of crusher making from self‐hardening bainitic cast steel were safe and reliable, and their service life were increased by 120–150% than Hadfield manganese steel.  相似文献   
6.
Hot extrusion of wear resistant Fe‐base metal matrix composites (MMC) Increasing demands on technical surfaces, i.e. thermal load, corrosion or wear, often prompt the development of tailored materials or coatings. In highly abrasive environments the progress in powder metallurgy has lead to the production of highly wear‐resistant materials based on metal‐matrix composites (MMC). Such materials are produced from a metal matrix (MM) based on Fe, Ni or Co and additional hard phases (HP), such as carbides, nitrides, borides or oxides. Moreover, powder metallurgical techniques can be used to adapt the particle size, the distribution and the content of the hard phases to the wear system on a large scale. HIP cladding is an established method of producing such MMC, but due to its near net shape capsule technique it is quite expensive. Because of this reason hot direct extrusion of capsules filled with powder blends was researched in a DFG‐Project as a method of producing long cylindrical products. Aiming at a high abrasive wear resistance, powder blends of hardenable steels with additions of fused tungsten carbide (WSC) or titanium carbides (TiC) were used. The extruded MMC were investigated with respect to their densification and microstructure, their bending strength and their wear resistance.  相似文献   
7.
The paper is dedicated to the decision of a problem of cutting tool diagnostics and working out of a remaining cutting tool life prediction algorithm. The example for practical realization of such algorithm on the CNC machine tool by machining under specified conditions is given. The question of working error compensation by means of corrective adjustment is considered.  相似文献   
8.
Constrained groove pressing (CGP) has emerged for producing ultra‐fine‐grained materials with distinguished properties. Low carbon steel sheets were subjected to severe plastic deformation by constrained groove pressing process. The effect of pre‐processing annealing temperature, ram speed and number of passes on microstructure, mechanical properties and wear behaviour of the sheets were investigated. The 3 mm thick sheets were deformed by a constrained groove pressing die at ram speeds: 5 mm/min, 10 mm min?1 and 20 mm min?1. Furthermore, the as received sheets were annealed at 600 °C and 900 °C, then deformed at ram speed 20 mm min?1. The annealing temperature 900 °C led to slightly coarser grains, lower strength and larger ductility compared to those obtained after annealing at 600 °C. With lowering the ram speed to 5 mm min?1, the number of passes could be increased to 10 passes while increasing ram speed from 5 mm min?1 to 20 mm min?1 improved the mechanical properties; after 3 constrained groove pressing passes, the ultimate tensile strength increased from 420 MPa to 490 MPa, the hardness from 174 HV 1 to 190 HV 1 and the elongation from 7.6 % to 9.5 %. Finer grains were also obtained by increasing ram speed. Wear resistance was greatly enhanced by constrained groove pressing and by the increase in ram speed.  相似文献   
9.
10.
The processing of polymers necessitates the use of corrosion and wear resistant tool materials being in direct contact with the feedstock material. Corrosion resistant cold work tool steels, the so called plastic mold steels, are successfully applied here, offering both a good wear and corrosion resistance. The lifetime of this tool depends on the applied heat treatment but also the processing route has a distinct effect on the resulting properties. In this work, different powder metallurgical routes like hot isostatic pressing, build‐up welding (plasma transfer arc (PTA)) and thermal spraying (high velocity oxy fuel (HVOF) and atmospheric plasma spraying (APS)) were applied to produce coatings on low‐alloyed construction steel. Coatings are compared in relation to the changes in microstructure and the feasibility of an adequate heat treatment. This paper discusses strategies to maximize wear resistance in dependence of heat treatment and the microstructural changes arising from the processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号