首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12639篇
  免费   456篇
  国内免费   679篇
电工技术   110篇
综合类   474篇
化学工业   1032篇
金属工艺   5592篇
机械仪表   432篇
建筑科学   85篇
矿业工程   143篇
能源动力   460篇
轻工业   42篇
水利工程   3篇
石油天然气   18篇
武器工业   84篇
无线电   324篇
一般工业技术   3728篇
冶金工业   974篇
原子能技术   116篇
自动化技术   157篇
  2024年   26篇
  2023年   219篇
  2022年   184篇
  2021年   372篇
  2020年   352篇
  2019年   349篇
  2018年   305篇
  2017年   336篇
  2016年   249篇
  2015年   298篇
  2014年   495篇
  2013年   940篇
  2012年   505篇
  2011年   1074篇
  2010年   638篇
  2009年   774篇
  2008年   711篇
  2007年   714篇
  2006年   724篇
  2005年   576篇
  2004年   583篇
  2003年   523篇
  2002年   409篇
  2001年   320篇
  2000年   291篇
  1999年   290篇
  1998年   210篇
  1997年   241篇
  1996年   173篇
  1995年   173篇
  1994年   139篇
  1993年   99篇
  1992年   83篇
  1991年   60篇
  1990年   55篇
  1989年   49篇
  1988年   25篇
  1987年   31篇
  1986年   28篇
  1985年   15篇
  1984年   23篇
  1983年   17篇
  1982年   21篇
  1981年   16篇
  1980年   15篇
  1979年   9篇
  1978年   14篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
A body-centered cubic equiatomic TiZrTaNbAl multi-principal element alloy (MPEA) with elemental fluctuations was investigated to further understand the relationship between the microstructure and hydrogen distribution. In this study, a composition dependence of the hydrogen distribution was observed in the TiZrTaNbAl MPEA. An inhomogeneous electron density distribution of the MPEA was revealed by advanced differential phase-contrast scanning electron microscopy (DPC-STEM) for the first time. The results showed that the electron density has a significant effect on the hydrogen distribution in TiZrTaNbAl MPEAs. This work provides new insight into the design of materials with high hydrogen storage capacity and high hydrogen embrittlement resistance.  相似文献   
2.
Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners offer an effective method to refine Al-Si casting alloys,but their anti Si-poisoning capability is far from being understood.In this work,the grain refining mechanism and the anti Si-poisoning effect in the Al-10 Si/Al-5 Nb-B system were systematically investigated by combining transmission electron microscope,first-principles calculations,and thermodynamic calculations.It is revealed that NbB2provides the main nucleation site in the Al-10 Si ingot inoculated by 0.1 wt.%Nb Al-5 Nb-B refiner.The exposed Nb atoms on the(0001)NbB2and(1-100)NbB2surface can be substituted by Al to form(Al,Nb)B2intermedia layers.In addition,a layer of NbAl3-like compound(NbAl3')can cover the surface of NbB2with the orientation relation of(1-100)[11-20]NbB2//(110)[110]NbAl3'.Both of the(Al,Nb)B2and NbAl3'intermedia layers contribute to enhancing the nucleation potency of NbB2particles.These discoveries provide fundamental insight to the grain refining mechanism of the Nb-B based refiners for Al-Si casting alloys and are expected to guide the future development of stronger refiners for Al-Si casting alloys.  相似文献   
3.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
4.
ABSTRACT

This study investigates the effects of strain, strain rates, and forming directions (RD-rolling direction, TD-transverse direction, and ND-normal direction) on adiabatic shear, via dynamic impact compression tests using the Split Hopkinson Pressure Bar (SHPB) apparatus. A modified Johnson-Cook (J-C) constitutive model is proposed, which used to analyse the influence of the constitutive parameters on the sensitivity of adiabatic shear, employing a finite element software. The different sensitivities of adiabatic shear under different directions are explained by combining microscopic analysis and results from mechanical responses. The results show that the sensitivity of adiabatic shear can be related to the time of stress collapse in the following trend: ND?>?TD?>?RD; the sensitivities of these constitutive parameters on adiabatic shear are calculated and compared.  相似文献   
5.
The structural changes induced in a CoCrCuFeNi multicomponent nano-crystalline high-entropy alloy (HEA) under fast electron irradiation were investigated by in-situ transmission electron microscopy (TEM) using a high voltage electron microscope (HVEM). A fine-grained face centered cubic (fcc) single phase was obtained in the sputtered specimens. The fcc solid solution showed high phase stability against irradiation over a wide temperature range from 298 to 773 K, and remained as the main constituent phase even when the samples were irradiated up to 40 displacement per atom (dpa). Moreover, the irradiation did not seem to induce grain coarsening. This is the first report on the irradiation damage in 5-component HEA under MeV electron irradiation.  相似文献   
6.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
7.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
8.
9.
In this paper, cenosphere particles embedded in AA2014 aluminium matrix are used to fabricate syntactic foam by stir casting method. The particle size is about 100?µm and foam density is about 1990?kg?m?3. Compression tests at strain rate 0.001/s are performed on foam samples to characterise their mechanical properties which are then used in numerical analysis on commercial finite element analysis software ABAQUS/CAE with isotropic elastic-plastic material model. Experimental and numerical results show good conformity in deformation behaviour with elastic and plateau zones showing average deviations less than 5% and 20%, respectively. Foams showed high yield stress and energy absorption capabilities that can be useful in making blast and impact resistant structures.  相似文献   
10.
The aim of this study was to investigate the structure and corrosion resistance of amorphous, amorphous‐crystalline, and crystalline Mg67Zn29Ca4 alloy for biodegradable applications. This paper presents a preparation method and results of the structural characterization and corrosion resistance analysis of the material. Samples were prepared in the form of 3 mm diameter rods. The structure of the alloy was examined with the use of X‐ray diffractometry and scanning electron microscopy. The thermal properties of the samples were examined with differential scanning calorimetry (DSC). Results of DSC analysis were used to determine heat treatment temperatures, allowing to obtain different fractures of crystalline phase in the material. Corrosion resistance of heat‐treated samples was investigated by immersion tests and electrochemical measurements performed in the simulated body fluid. The X‐ray diffraction results confirmed that the prepared Mg67Zn29Ca4 alloy's structure is fully amorphous. After heat treatment, samples with different fractions of amorphous phase in the structure were obtained. Immersion tests of the samples showed that the structure significantly influenced corrosion resistance in examined materials. It should be pointed out, that certain amounts of crystalline phase in amorphous matrix can greatly improve the corrosion resistance of Mg67Zn29Ca4 alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号