首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6663篇
  免费   434篇
  国内免费   108篇
电工技术   43篇
综合类   214篇
化学工业   1141篇
金属工艺   715篇
机械仪表   172篇
建筑科学   224篇
矿业工程   2031篇
能源动力   272篇
轻工业   109篇
水利工程   16篇
石油天然气   29篇
武器工业   12篇
无线电   417篇
一般工业技术   797篇
冶金工业   820篇
原子能技术   52篇
自动化技术   141篇
  2024年   6篇
  2023年   67篇
  2022年   136篇
  2021年   160篇
  2020年   194篇
  2019年   125篇
  2018年   141篇
  2017年   140篇
  2016年   155篇
  2015年   142篇
  2014年   313篇
  2013年   367篇
  2012年   351篇
  2011年   547篇
  2010年   410篇
  2009年   418篇
  2008年   418篇
  2007年   417篇
  2006年   390篇
  2005年   288篇
  2004年   306篇
  2003年   303篇
  2002年   188篇
  2001年   160篇
  2000年   169篇
  1999年   197篇
  1998年   147篇
  1997年   128篇
  1996年   84篇
  1995年   81篇
  1994年   56篇
  1993年   49篇
  1992年   45篇
  1991年   23篇
  1990年   18篇
  1989年   24篇
  1988年   15篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1981年   1篇
  1976年   1篇
排序方式: 共有7205条查询结果,搜索用时 187 毫秒
1.
Machine learning algorithms have been widely used in mine fault diagnosis. The correct selection of the suitable algorithms is the key factor that affects the fault diagnosis. However, the impact of machine learning algorithms on the prediction performance of mine fault diagnosis models has not been fully evaluated. In this study, the windage alteration faults (WAFs) diagnosis models, which are based on K-nearest neighbor algorithm (KNN), multi-layer perceptron (MLP), support vector machine (SVM), and decision tree (DT), are constructed. Furthermore, the applicability of these four algorithms in the WAFs diagnosis is explored by a T-type ventilation network simulation experiment and the field empirical application research of Jinchuan No. 2 mine. The accuracy of the fault location diagnosis for the four models in both networks was 100%. In the simulation experiment, the mean absolute percentage error (MAPE) between the predicted values and the real values of the fault volume of the four models was 0.59%, 97.26%, 123.61%, and 8.78%, respectively. The MAPE for the field empirical application was 3.94%, 52.40%, 25.25%, and 7.15%, respectively. The results of the comprehensive evaluation of the fault location and fault volume diagnosis tests showed that the KNN model is the most suitable algorithm for the WAFs diagnosis, whereas the prediction performance of the DT model was the second-best. This study realizes the intelligent diagnosis of WAFs, and provides technical support for the realization of intelligent ventilation.  相似文献   
2.
《Ceramics International》2021,47(22):31319-31328
Manufacturing lightweight aggregate (LWA) at high temperature is an effective way to immobilize heavy metals in solid waste. This work investigated the performance and solidification mechanism of LWA prepared from copper contaminated soil. The volume expansion of LWA could reach a maximum of 28%, and its lowest density accounted of 1.5 g/cm3, which met the standard requirements. Optical microscope and micro-CT test illustrated that the addition of Cu leaded to obvious phase separation in LWA. The Cu leaching result of LWA first increased and then dropped with the temperature. The XRD test found that the main formation phase of Cu in LWA were t-CuFe2O4 and amorphous phase that they had different acid resistance ability. XPS revealed that the main cause of the agglomeration of liquid phase in LWA was the chain broken reaction between Cu and Si–O tetrahedron. SEM-EDS results showed that the distribution of Cu and Si had a strong correlation, which meant that Cu mostly formed amorphous phase. This work showed the uniqueness of Cu in the high temperature immobilization and pointed out the best immobilization target phase.  相似文献   
3.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
4.
针对某金矿,在回收金银的基础上,对金银浮选尾矿进行云母和长石浮选,以及提纯石英试验,最终获得SiO2品位99.91%的石英产品。提纯石英产品与比利时矽比科矿业有限公司石英产品进行对比试验,通过化学成分、粒度组成、熔制、粘度和热膨胀系数测试对比试验,得出金矿提纯石英达到甚至超过矽比科进口石英产品的各项技术指标。  相似文献   
5.
针对地雷的毁伤目标和特性,提出一种新颖的多棱柱状药型罩结构,其可看作由八个楔形罩对称排列相邻连接而成。应用非线性有限元软件完成了爆炸载荷下多棱柱状药型罩形成射流过程的数值模拟,结果表明新型药型罩结构能够实现预期设想,形成一股汇聚射流。研究结果为地雷战斗部研究提供了一种新的选择。  相似文献   
6.
李荣先 《世界有色金属》2020,(3):114-114,116
随着社会的不断发展,矿产资源为我国带来了巨大的经济效益,并在社会经济发展中占有重要的地位。但在矿山资源开发的过程中,威胁人身安全的事故经常发生。因此,本文对探矿工程安全措施进行了研究和分析。  相似文献   
7.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
8.
This paper presents the development and implementation of an innovative mixed integer programming based mathematical model for an open pit mining operation with Grade Engineering framework. Grade Engineering comprises a range of coarse-separation based pre-processing techniques that separate the desirable (i.e. high-grade) and undesirable (i.e. low-grade or uneconomic) materials and ensure the delivery of only selected quantity of high quality (or high-grade) material to energy, water, and cost-intensive processing plant. The model maximizes the net present value under a range of operational and processing constraints. Given that the proposed model is computationally complex, the authors employ a data pre-processing procedure and then evaluate the performance of the model at several practical instances using computation time, optimality gap, and the net present value as valid measures. In addition, a comparison of the proposed and traditional (without Grade Engineering) models reflects that the proposed model outperforms the traditional formulation.  相似文献   
9.
The copper and cobalt oxides composites coatings on aluminum substrates have been successfully synthesized via sol-gel method using nitrate-based sol precursors. The composites were characterized by X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), and UV–Vis–NIR spectrophotometry. The sol-gel reactions were discussed and Molecular Dynamics (MD) simulation was integrated into the study to predict molecules assembly properties. The XRD analyses revealed that the CuO and the Co3O4 composites were formed after the annealing process with the average difference of the calculated lattice parameters compared to ICDDs was 1.17%. The surface electronic structure was mainly consisted of tetrahedral Cu(I), octahedral Cu(II), tetrahedral Co(II), octahedral Co(III) as well as surface, sub-surface and lattice oxygen O?. The XRD, XPS and MD simulation results showed that there was minimal (or possibly non-existing) indication of copper-cobalt mixed phase oxides formations. FESEM and AFM surveys revealed that the coating had a porous surface composed of interlinked nanoparticles in the range of ~?10 to ~?40?nm. UV–Vis–NIR reflectance spectra showed that the sol precursors concentration and the dip-drying cycle significantly influenced the absorptance value with optimum absorptance (α) of 88.7% exhibited by coating synthesized using sol concentration of 0.1?M and 10 dip-drying cycles. High absorptance value and simplicity in the synthesis process render the coatings to be very promising candidates for solar selective absorber (SSA) applications.  相似文献   
10.
In this work, the solid state reaction between a thin film of copper and silicon has been studied using Rutherford backscattering spectroscopy, X-ray diffraction, scanning electron microscopy and microprobe analysis. Cu films of 400 and 900 Å thicknesses are thermally evaporated on Si(1 1 1) substrates, part of them had previously been implanted with antimony ions of 5×1014 or 5×1015 at. cm−2 doses. The samples are heat-treated in vacuum at temperatures in the range 200–700 °C for various times. The results show the growth and formation of Cu3Si and Cu4Si silicides under crystallites shape dispatched on the sample surface, independently of the implantation dose. On the other hand, it is established that the copper layer is less and less consumed as the antimony dose increases, resulting in the accumulation of Sb+ ions at silicide/Si interface and in the silicide layer close to surface. The exposure of samples to air at room temperature shows the stability of Cu4Si phase whereas the Cu3Si silicide disappears to the benefit of the silicon dioxide formation. The observed phenomena are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号