首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   11篇
  国内免费   5篇
电工技术   3篇
综合类   4篇
化学工业   200篇
金属工艺   3篇
机械仪表   20篇
建筑科学   15篇
矿业工程   7篇
能源动力   21篇
轻工业   80篇
石油天然气   3篇
无线电   4篇
一般工业技术   49篇
冶金工业   10篇
原子能技术   2篇
自动化技术   12篇
  2024年   1篇
  2023年   9篇
  2022年   8篇
  2021年   12篇
  2020年   11篇
  2019年   9篇
  2018年   12篇
  2017年   17篇
  2016年   15篇
  2015年   10篇
  2014年   29篇
  2013年   86篇
  2012年   14篇
  2011年   28篇
  2010年   12篇
  2009年   14篇
  2008年   16篇
  2007年   14篇
  2006年   23篇
  2005年   7篇
  2004年   5篇
  2003年   10篇
  2002年   9篇
  2001年   13篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1986年   5篇
  1984年   2篇
  1982年   1篇
排序方式: 共有433条查询结果,搜索用时 15 毫秒
1.
The problem of operating freeze drying of pharmaceutical products in vials placed in trays of a freeze dryer to remove free water (in frozen state) at a minimum time was formulated as an optimal control problem. Two different types of freeze dryer designs were considered. In type I freeze dryer design, upper and lower plate temperatures were controlled together, while in type II freeze dryer design, upper and lower plate temperatures were controlled independently. The heat input to the material being dried and the drying chamber pressure were considered as control variables. Constraints were placed on the system state variables by the melting and scorch temperatures during primary drying stage. Necessary conditions of optimality for the primary drying stage of freeze drying process in vials are derived and presented. Furthermore, an approach for constructing the optimal control policies that would minimize the drying time for the primary drying stage was given. In order to analyze optimal control policy for the primary drying stage of the freeze-drying process in vials, a rigorous multi-dimensional unsteady state mathematical model was used. The theoretical approach presented in this work was applied in the freeze drying of skim milk. Significant reductions in the drying times of primary drying stage of freeze drying process in vials were obtained, as compared to the drying times obtained from conventional operational policies.  相似文献   
2.
1 故障现象一次 ,我们用KL -1 5型制氧制氮车开机制氮 ,给一只容积为 40升、最高工作压力为1 4 7MPa的气瓶灌充氮气 ,当气瓶充气压力升高到一定值时不再上升。反复开泵 ,压力基本不变。液氧泵停止时 ,出口压力无明显下降。经分析判断导致气瓶压力升高到一定值时不再上升的原因是由于液氧泵被冻结所致。2 排除方法首先关闭液氧泵。拧开制冷机氢气放气阀 ,使压力下降到 1 0MPa。开大放气阀 ,使二级压力保持在 0 3 5MPa左右。调整正流空气调节阀 ,调节好中部温度。关闭液氮进液氧泵阀和气氮出液氧泵阀。戴棉布手套 ,拆开液氮进口接头、…  相似文献   
3.
The aim of this article is to develop an experiment and a procedure to investigate the restoration of water-damaged paper and archival materials using freeze drying in order to allow a reproducible test and comparison of the influence of different operating conditions on drying time and restored paper quality. Firstly, a reproducible method for the preparation of soaked samples simulating water-damaged paper has been developed. Then, the samples have been freeze-dried in a laboratory-scale apparatus that allowed monitoring the temperature as well as the weight of the samples. The technique of evaporative freezing, which reduces the drying time required, has been used in this case. An innovative procedure for the visualization of the progress of the drying process has been validated, thus allowing the validation of a simple phenomenological model of the time evolution of the ice core volume; in addition, data on the residual moisture of the dried paper sheets in different zones have been given. Finally, optimization of this particular drying process by using simple or more sophisticated approaches has been discussed.  相似文献   
4.
热敏性、高粘度物料的干燥仍是现代干燥技术中的一个难题。灵芝水提后,由薄膜蒸发器浓缩至含水量70%左右,然后采用微波真空干燥(真空度3000Pa)至水分含量10%左右,改用传统的电热真空干燥(55~60℃)至含水量6%~7%。对干燥产品的主要生物活性成分——灵芝多糖和三萜酸进行了分析检测并与其它干燥方法进行了比较。结果表明:利用微波真空干燥的灵芝产品其灵芝多糖和三萜酸的保留率与冷冻干燥产品十分接近。而比传统真空干燥(60—65℃)的产品要高得多,此外采用微波真空干燥的干燥时间要短得多。  相似文献   
5.
李佐花 《塑料工业》2006,34(Z1):304-306
介绍了物理填加法回收利用泡沫塑料边角废料,其中重点介绍了用物理填加法回收利用软质泡沫塑料边角废料的生产工艺及设备,并对填加废料与不填加废料生产的经济性进行比较。  相似文献   
6.
The seasonal transition of the boreal forest between frozen and non-frozen conditions affects a number of ecosystem processes that cycle between winter dormant and summer active states. The relatively short Ku-band wavelength (2.14 cm) of the space-borne NASA scatterometer (NSCAT) is sensitive to changes in dielectric properties, associated with large-scale changes in the relative abundance and phase (frozen or thawed) of canopy and surface water. We used a temporal change detection analysis of NSCAT daily radar backscatter measurements to characterize the 1997 seasonal spring thaw transition period across the 106 km2 BOREAS study region of central Canada. In the spring, air temperature transitions from frozen to non-frozen conditions and surface observations of seasonal snow cover depletion were generally coincident with decreases in radar backscatter of more than 2.9 dB, regardless of regional landcover characteristics. We used a temporal classification of NSCAT daily differences from 5-day smoothed backscatter values to derive three simple indices describing the initiation, primary event and completion of the spring thaw transition period. Several factors had a negative impact on the relative accuracy of NSCAT-based results, including periodic gaps in NSCAT daily time-series information and a large (i.e., >2 cm day−1) spring rainfall event. However, these results were generally successful in capturing the seasonal transition of the region from frozen to non-frozen conditions, based on comparisons with regional weather station network information. These results illustrate the potential for improved assessment of springtime phenology and associated ecosystem dynamics across high latitude regions, where field based and optical remote-sensing methods are substantially degraded by frequent cloud cover, low solar illumination and sparse surface weather station networks.  相似文献   
7.
This article presents a study of the effect of drying methods on dyeing capacity of widespread European flora dyestuff plant materials. The natural colorants, derived from the selected plant materials, were applied on chemical pulp in order to examine their dyeability. In this work, three different drying methods were examined—the natural, the air-, and the freeze-drying method—in various conditions. The plant materials that were dried naturally show weak dyeing results in comparison with the air- and freeze-dried materials. Freeze drying significantly improved the dyeing capacity of dyestuff plant materials with high initial moisture content. On the other hand, air drying at low temperature and high relative humidity improved the dyeing capacity of plant materials with low initial moisture content.  相似文献   
8.
The freeze–thaw cycling damages the soil structure, and the shear performance of soil are degraded. A series of tests on lime–soil(L–S) and fiber–lime–soil(F–L–S), including freeze–thaw test, the triaxial compression test, nuclear magnetic resonance (NMR) test and scanning electron microscope (SEM) test, were completed. The test results showed that fiber reinforcement changed the stress–strain behavior and failure pattern of soil. The cohesion and internal friction angle of soil gradually decreased with the increase of freeze–thaw cycles (F–T cycles). The pore radius and porosity of soil increased, while the micro pore volume decreased, and the small pore volume, medium pore volume and large pore volume increased, and the large pore volume had a little variation after 10 F–T cycles. The number of pores of F–L–S was less than L–S, demonstrating that the addition of fiber helped to reduce the pore volume. The interweaved fibers limited the development and the connection of cracks. By means of the spatial restraint effect of fiber on the soil and the friction action between fiber and soil, the shear performances and freeze–thaw durability of F–L–S better were than that of L–S.  相似文献   
9.
Nacre-inspired laminated composites have been proven to possess a unique combination of strength and toughness. In this study, we fabricated nacre-mimetic Cu/TiC composites via unidirectional freezing of aqueous TiC slurries containing different amounts of NiO additives, followed by ice sublimation, carbothermal reduction of NiO to Ni during sintering and then gas-pressure infiltration of the Cu melt. The introduction of Ni greatly facilitated the densification of ceramic lamellae and enhanced the interfacial bonding between Cu and TiC. The resultant composites displayed outstanding damage tolerance and anisotropic electrical conductivities. Specifically, for an ~31?vol% TiC–Cu composite containing 24?wt% Ni in the ceramic lamellae (based on the TiC content), a fracture toughness (KJc) of 72.5?±?1.0?MPa·m1/2, work of fracture of 53.4?±?3.5?kJ/m2, bending strength of 725?±?11?MPa and longitudinal electrical conductivity of 22.7?MS/m (~60% of the Cu matrix) were achieved, which were approx. 81%, 536%, 122% and 97% higher than those of the Ni-free composite, respectively. Noticeable toughening was demonstrated to be a consequence of multiple cracking, plastic deformation and uncracked-ligament bridging of the metal layers, as well as crack deflection and blunting. On the other hand, significant strengthening resulted from tailoring the microstructures in the ceramic layers and at the Cu/TiC interface as a result of Ni doping. We believe that the facile strategy adopted herein provides an effective way to solve the problems of wetting and bonding related to metal infiltration and can be readily extended to the preparation of other nacre-inspired metal?ceramic composites.  相似文献   
10.
The rice starch mixtures with varying amylose contents (AC) of 0.12–19.00% weight were prepared by mixing waxy and nonwaxy rice starches. The 5% rice bran oil shortening was added in the starch paste. After gelatinisation, thin slabs of starch pastes were aged at 4 °C for 24 h. The aged slabs were dried by freeze‐drying to obtain 25% moisture content. A microwave oven set to 600 J s?1 for 90 s was then used for puffing. The crucial factors affecting the snack purchase were texture and nutrition. The relative crystallinity and retrogradation enthalpy (?Hr) of freeze‐dried pellets increased with increasing the AC. From using a differential scanning calorimeter (DSC), endotherms of pellets were shown only when AC > 0.12%. An amylose–lipid complex was shown in pellets with AC ≥ 9.00%. Relationships between the AC and all puffed product properties were linear. Increasing AC provided greater hardness, fracturability, bulk density, but lower expansion ratio. From the sensory evaluation, the panellists preferred the puffed products with 9.00% AC. Increasing the AC gave higher crispness, hardness, brittleness, air cell opacity and density, but resulted in less puffiness. Thus, the microwave drying has the potential to puff a healthy expanded snack but giving the desirable properties depends on AC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号