首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   66篇
  国内免费   79篇
电工技术   2篇
综合类   16篇
化学工业   18篇
金属工艺   355篇
机械仪表   67篇
建筑科学   20篇
矿业工程   12篇
能源动力   12篇
石油天然气   11篇
武器工业   2篇
无线电   10篇
一般工业技术   153篇
冶金工业   53篇
原子能技术   21篇
自动化技术   6篇
  2024年   4篇
  2023年   20篇
  2022年   37篇
  2021年   50篇
  2020年   31篇
  2019年   29篇
  2018年   28篇
  2017年   39篇
  2016年   48篇
  2015年   43篇
  2014年   33篇
  2013年   61篇
  2012年   64篇
  2011年   60篇
  2010年   32篇
  2009年   25篇
  2008年   17篇
  2007年   16篇
  2006年   17篇
  2005年   18篇
  2004年   11篇
  2003年   14篇
  2002年   8篇
  2001年   14篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有758条查询结果,搜索用时 109 毫秒
1.
0IntroductionInterlayer metal is usually introduced while solidwelding heterogeneous metals with different chemical com-ponents and microstructures[1-3].The diffusion activationenergy(DAE)in both sides of interlayer and base metalcould be affected by the …  相似文献   
2.
采用有限元软件对高温合金IN690管材挤压损伤进行预测,研究挤压速度对损伤的影响规律,得到不同的挤压条件下的挤压阈值。不同挤压速度下损伤的变化随着挤压速度变化呈现先增大后减小的趋势。模拟摩擦系数为0.01、0.05、0.1、0.2条件下的损伤,在摩擦系数为0.01时,坯料表面比较光滑,损伤比较轻;摩擦系数为0.2时,表面凹凸不平,损伤严重。  相似文献   
3.
The ultrasonic vibration assisted drilling of Inconel 718 superalloy is studied in this paper. The tool holder of a machining center is retrofitted so that axial resonant vibration can be provided. Experimental results show that the chip size is reduced, and the variation of torque in drilling becomes smaller. These phenomena are particularly apparent at the final stage of a drill's usable life. It is also found that there is little improvement in drilling performance when the frequency of the ultrasonic vibration is varied. On the contrary, a drill's life is greatly increased when the vibration with a smaller amplitude is applied. But too large a vibration amplitude, such as over 12 μm in this study, could lead to negative effects. For the testing conditions, the frequency of 31.8 kHz and the amplitude of 4 μm result in the best drill life and quality of the drilled hole in this study. Under this condition a drill's life is prolonged by as much as 2.7 times of that without vibration assisted drilling process. Concerning drilling efficiency, it is found that by applying ultrasonic vibration assisted drilling, lifting of the drill for chip removal as commonly employed in conventional drilling of a high aspect ratio hole is not necessary, and saving of the working time is obtained.  相似文献   
4.
Inconel 718 is a difficult-to-cut nickel-based superalloy commonly used in aerospace industry. This paper presents an experimental study of the tool wear propagation and cutting force variations in the end milling of Inconel 718 with coated carbide inserts. The experimental results showed that significant flank wear was the predominant failure mode affecting the tool life. The tool flank wear propagation in the up milling operations was more rapid than that in the down milling operations. The cutting force variation along with the tool wear propagation was also analysed. While the thermal effects could be a significant cause for the peak force variation within a single cutting pass, the tool wear propagation was believed to be responsible for the gradual increase of the mean peak force in successive cutting passes.  相似文献   
5.
Different metallurgical processing, including the standard heat treatment, heat treatment without β aging, addition of high amount of Cr, and long-term isothermal exposure, was conducted on superalloy Inconel 783. For these processed materials, the tensile property and hardness at room temperature and stress relaxation behavior at 650 °C were examined. The testing results showed that isothermal exposure and heat treatment without β aging slightly enhanced the yield strength of alloy 783 at room temperature as well as all metallurgical processing in this study produced an identical stress relaxation behavior at 650 °C. The microstructure variation with different processing was analyzed using optical microscope, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).  相似文献   
6.
Refrigerated cooling air cutting of difficult-to-cut materials   总被引:1,自引:1,他引:1  
One approach to enhance machining performance is to apply cutting fluids during cutting process. However, the use of cutting fluids in machining process has caused some problems such as high cost, pollution, and hazards to operator's health. All the problems related to the use of cutting fluids have urged researchers to search for some alternatives to minimize or even avoid the use of cutting fluids in machining operations. Cooling gas cutting is one of these alternatives. This paper investigates the effect of cooling air cutting on tool wear, surface finish and chip shape in finish turning of Inconel 718 nickel-base super alloy and high-speed milling of AISI D2 cold work tool steel. Comparative experiments were conducted under different cooling/lubrication conditions, i.e. dry cutting, minimal quantity lubrication (MQL), cooling air, and cooling air and minimal quantity lubrication (CAMQL). For this research, composite refrigeration method was adopted to develop a new cooling gas equipment which was used to lower the temperature of compressed gas. The significant experimental results were: (i) application of cooing air and CAMQL resulted in drastic reduction in tool wear and surface roughness, and significant improvement in chip shape in finish turning of Inconel 718, (ii) in the high-speed milling of AISI D2, cooling air cutting presented longer tool life and slightly higher surface roughness than dry cutting and MQL. Therefore, it appears that cooling air cutting can provide not only environment friendliness but also great improvement in machinability of difficult-to-cut materials.  相似文献   
7.
8.
Inconel 718 with thickness ranged from 0. 1 - 1.7 mm was chosen as interlayer to promote weldability in friction welding of TiAl intermetallics and structural steel such as AIS14140, in which the welded joint presents single fin showing less welding deformation on TiAl side. The correlations between tensile strength and the interlayer thickness were analyzed and fitted to a model. It indicates an optimum interlayer thickness ranged from 0.9 - 1.1 mm where the tensile strength reaches as high as 360 MPa. Otherwise, while the interlayer thickness decreases to 0. 1 mm, brittle compounds of TiC, Al2Ti4C2 and MTC3 are formed in the welded zone so that the tensile strength decays. Thicker interlayer should be also avoided as double joints may occur at TiAl -lnconel 718 and lnconel 718 -AISI 4140, respectively, which lowers the tensile strength to some extent.  相似文献   
9.
In order to evaluate the stress corrosion cracking resistance for commercial alloys (C600MA, C600TT, C690TT) and Korean-made alloys (K600MA, K690TT), C-ring tests were performed in a caustic environment of 4, 10, 20, 30, and 50% NaOH solution at 315°C, for 480 h with an applied potential of 125 mV vs. OCP. Different stress corrosion cracking phenomena were observed according to the NaOH concentration. The rate of caustic IGSCC attack did not appear to increase monotonically with caustic concentrations, but peaked at a concentration between 4 and 50% caustic, or approximately 30% NaOH. Intergranular stress corrosion cracking was found for C600MA in 10, 20, and 30% NaOH solutions, while no cracking was observed in the 4 and 50% NaOH solutions. In 30% NaOH solution, transgrnular stress corrosion cracking was detected in C690TT, which may be related with the large amount of plastic strain (150% yield) and the applied potential (125 mV vs. OCP). The overall data clearly indicate that C600MA has the worst SCC resistance while K690TT offers the best resistance. There is also fairly good correlation between the caustic SCC susceptibility and some metallurgical parameters, particularly the grain size and the yield strength at room temperature. Specifically, materials having larger grain size and lower yield strength exhibited higher caustic SCC resistance.  相似文献   
10.
The recent research in biocompatible materials has been useful in replacing and supporting the fractured natural human bones/joints. Under some condition, negative reaction like release of ions from the bare metal toward the human body fluid leads to corrosion. In this proposed research paper, the biocompatibility of the laser surface-modified austenitic stainless steel (SS316L) and nickel-based superalloy (Inconel 718) was studied. The investigation on laser-modified surfaces is evaluated through electrochemical polarization analysis using simulated body fluid (SBF). The samples subjected to electrochemical polarization analysis were characterized by optical image analysis, SEM, EDS, and XRD analysis. It was inferred that laser surface-modified materials provided enhanced corrosion resistance and bare nickel alloy is more susceptible to corrosion by SBF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号