首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15190篇
  免费   756篇
  国内免费   444篇
电工技术   393篇
技术理论   1篇
综合类   498篇
化学工业   2015篇
金属工艺   2711篇
机械仪表   836篇
建筑科学   1969篇
矿业工程   299篇
能源动力   285篇
轻工业   961篇
水利工程   70篇
石油天然气   315篇
武器工业   99篇
无线电   698篇
一般工业技术   1376篇
冶金工业   2227篇
原子能技术   208篇
自动化技术   1429篇
  2024年   31篇
  2023年   169篇
  2022年   402篇
  2021年   351篇
  2020年   280篇
  2019年   231篇
  2018年   238篇
  2017年   274篇
  2016年   391篇
  2015年   418篇
  2014年   699篇
  2013年   825篇
  2012年   978篇
  2011年   1387篇
  2010年   976篇
  2009年   1033篇
  2008年   941篇
  2007年   999篇
  2006年   911篇
  2005年   734篇
  2004年   649篇
  2003年   558篇
  2002年   483篇
  2001年   337篇
  2000年   303篇
  1999年   305篇
  1998年   255篇
  1997年   217篇
  1996年   198篇
  1995年   233篇
  1994年   185篇
  1993年   105篇
  1992年   49篇
  1991年   55篇
  1990年   33篇
  1989年   35篇
  1988年   37篇
  1987年   16篇
  1986年   10篇
  1985年   7篇
  1984年   12篇
  1983年   6篇
  1982年   3篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1968年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
This article provides a critical assessment of H2 from the standpoint of more widespread use as a sustainable fuel for Indian mobility applications in the global context. The potential techno-economic advantages of utilizing H2 for automobiles rather than battery electric vehicles or conventional internal combustion engine vehicles are emphasized. The present assessment demonstrates that H2 production, storage, and distribution costs are the primary challenges, and a significant improvement is still necessary for H2 to compete either against the internal combustion engine vehicle or the battery electric vehicle to win the race, arguably. The secondary challenges have also been demonstrated, which include the cost of the fuel cell stack and the modifications associated with internal combustion engine vehicles, as well as regulatory and safety concerns, which impede the widespread usage of H2. It is critical that policy-making for sustainable mobility in India is possible with the aid of a National H2 Energy Road-Map. This in turn can achieve a cost target of $0.5/kg for H2.  相似文献   
2.
Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. Finally, the parametrized equation is applied to calculate the stress-enhanced hydrogen solubility of thin-walled pipelines and thick-walled pressure vessels during service.  相似文献   
3.
Glioblastoma (GBM) is a barely treatable disease due to its profound chemoresistance. A distinct inter- and intratumoral heterogeneity reflected by specialized microenvironmental niches and different tumor cell subpopulations allows GBMs to evade therapy regimens. Thus, there is an urgent need to develop alternative treatment strategies. A promising candidate for the treatment of GBMs is AT101, the R(-) enantiomer of gossypol. The present study evaluates the effects of AT101, alone or in combination with temozolomide (TMZ), in a microenvironmental glioma stem cell niche model of two GBM cell lines (U251MG and U87MG). AT101 was found to induce strong cytotoxic effects on U251MG and U87MG stem-like cells in comparison to the respective native cells. Moreover, a higher sensitivity against treatment with AT101 was observed upon incubation of native cells with a stem-like cell-conditioned medium. This higher sensitivity was reflected by a specific inhibitory influence on the p-p42/44 signaling pathway. Further, the expression of CXCR7 and the interleukin-6 receptor was significantly regulated upon these stimulatory conditions. Since tumor stem-like cells are known to mediate the development of tumor recurrences and were observed to strongly respond to the AT101 treatment, this might represent a promising approach to prevent the development of GBM recurrences.  相似文献   
4.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
5.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
6.
Fretting may cause severe surface damage and lead to unexpected fatigue failure. Our test apparatus was designed based on reciprocating, large, annular flat-on-flat contact without any edge effects in the direction of the fretting movement. Fretting wear tests were run with quenched and tempered steel with different normal pressures and sliding amplitudes under gross sliding conditions. The development of the friction coefficient and total wear mass depended mostly on the accumulated sliding distance. Initially, friction and wear were highly adhesive but gradually changed to abrasive due to third body accumulation in the interface.  相似文献   
7.
张小强  赵娜  徐雪飞 《冶金设备》2020,(1):17-20,45
薄壁钢套类零件是机械制造中常碰到的一类难加工零件,由于其不同的功能用途和典型结构特点,其制造有一定难度,在实际生产过程中,经常出现加工制造后的零件尺寸精度、形状精度、形位精度达不到使用及设计要求。本文较系统地阐述了薄壁钢套类零件的典型制造工艺方法以及在制造过程中的变形分析和应对措施。  相似文献   
8.
Rolling contact fatigue in bearing steels is manifested by dark-etching regions, which are attributed to deformation induced tempering. In order to quantitatively explain this phenomenon, a model is suggested for martensite tempering assisted by dislocation glide during rolling contact fatigue. In the model, dislocations transport carbon from the matrix to carbide particles, provided that the carbon is located at a certain distance range from the dislocation contributing to the tempering process. By calculating the amount of carbon in the matrix, the kinetics of carbide thickening and hardness reduction are computed. It is found that the dark-etching region kinetics can be controlled by both bearing operation conditions (temperature and deformation rate) and microstructure (type, size, and volume fraction of carbides). The model is validated against tested bearings, and its limitations are discussed.  相似文献   
9.
《Ceramics International》2022,48(18):26233-26247
A new type of 3D-printable ‘one-part’ geopolymer was synthesized with fly ash (FA), granulated blast furnace slag (GBFS), steel slag (SS) and flue gas desulfurization gypsum (FGD). The effects of SS content (0–40%) on the rheological properties, 3D-printability, mechanical anisotropy and reaction kinetics of geopolymer were investigated. The yield stress and plastic viscosity monotonically decreased with the increasing SS content. Contrarily, the geopolymer with 10% of SS presented better extrudability, buildability and mechanical strength than those with 0, 20%, 30% and 40% of SS. This was mainly attributed to the conflicting influence of SS on geopolymerization, of which the OH? produced by hydration of SS raised the alkalinity of the reaction system and accelerated the dissolution of SiO44? and AlO45?, while the low reactivity prohibited the following polymerization process. Furthermore, the 3D-printed geopolymer presented more compact microstructure and less mechanical anisotropy thanks to the crosslinking of morphologically complementary products, including N(C)-A-S-H, C–S–H, AFt and CH, formed via synergistic reaction of FA-GBFS-SS-FGD system.  相似文献   
10.
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号