首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6707篇
  免费   415篇
  国内免费   185篇
电工技术   166篇
综合类   283篇
化学工业   1683篇
金属工艺   796篇
机械仪表   95篇
建筑科学   107篇
矿业工程   405篇
能源动力   968篇
轻工业   160篇
水利工程   11篇
石油天然气   55篇
武器工业   12篇
无线电   263篇
一般工业技术   1036篇
冶金工业   1088篇
原子能技术   75篇
自动化技术   104篇
  2024年   24篇
  2023年   184篇
  2022年   182篇
  2021年   214篇
  2020年   233篇
  2019年   179篇
  2018年   139篇
  2017年   177篇
  2016年   139篇
  2015年   148篇
  2014年   338篇
  2013年   317篇
  2012年   386篇
  2011年   598篇
  2010年   407篇
  2009年   409篇
  2008年   339篇
  2007年   444篇
  2006年   404篇
  2005年   293篇
  2004年   307篇
  2003年   263篇
  2002年   223篇
  2001年   144篇
  2000年   159篇
  1999年   134篇
  1998年   93篇
  1997年   70篇
  1996年   75篇
  1995年   52篇
  1994年   50篇
  1993年   36篇
  1992年   36篇
  1991年   24篇
  1990年   26篇
  1989年   12篇
  1988年   13篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有7307条查询结果,搜索用时 15 毫秒
1.
It is clear that the entire world have to research, develop, demonstrate and plan for alternative energy systems for shorter term and also longer term. As a clean energy carrier, hydrogen has become increasingly important. It owes its prestige to the increase within the energy costs as a result of the equivocalness in the future availability. Two phase flow and hydrogen gas flow dynamics effect on performance of water electrolysis. Hydrogen bubbles are recognized to influence energy and mass transfer in gas-evolving electrodes. The movement of hydrogen bubbles on the electrodes in alkaline electrolysis is known to affect the reaction efficiency. Within the scope of this research, a physical modeling for the alkaline electrolysis is determined and the studies about the two-phase flow model are carried out for this model. Internal and external forces acting on the resulting bubbles are also determined. In this research, the analytical solution of two-phase flow analysis of hydrogen in the electrolysis is analyzed.  相似文献   
2.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
3.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
4.
不同给液方式对铜电解过程中有重要的影响,不同的循环方式会影响槽内温度分布、电解液成分及阳极泥沉降等,因此,根据铜电解生产不同情况的需要,分析对比了多种给液方式在贵冶电解车间的应用,总结了这几种给液方式的优缺点和适用条件。  相似文献   
5.
Water electrolysis is a process that can produce hydrogen in a clean way when renewable energy sources are used. This allows managing large renewable surpluses and transferring this energy to other sectors, such as industry or transport. Among the electrolytic technologies to produce hydrogen, proton exchange membrane (PEM) electrolysis is a promising alternative. One of the main components of PEM electrolysis cells are the bipolar plates, which are machined with a series of flow distribution channels, largely responsible for their performance and durability. In this work, AISI 316L stainless steel bipolar plates have been built by additive manufacturing (AM), using laser powder bed fusion (PBF-L) technology. These bipolar plates were subjected to ex-situ corrosion tests and assembled in an electrolysis cell to evaluate the polarization curve. Furthermore, the obtained results were compared with bipolar plates manufactured by conventional machining processes (MEC). The obtained experimental results are very similar for both manufacturing methods. This demonstrates the viability of the PBF-L technology to produce metal bipolar plates for PEM electrolyzers and opens the possibilities to design new and more complex flow distribution channels and to test these designs in initial phases before scaling them to larger surfaces.  相似文献   
6.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.  相似文献   
7.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   
8.
Undoped and fluorine doped ZnO thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique and then annealed at 350 °C in vacuum ambience. The F doping level was varied from 0 to 15 at% in steps of 5 at%. The XRD analysis showed that all the films are polycrystalline with hexagonal wurtzite structure and preferentially oriented along the (002) plane. Crystallite sizes were found to increase when 5 at% of F is doped and then decreased with further doping. It was seen from the SEM images that the doping causes remarkable changes in the surface morphology and the annealing treatment results in well-defined grains with an improvement in the grain size irrespective of doping level. All the films exhibit good transparency (>70%) after vacuum annealing. Electrical resistivity of the film was found to be minimum (1.32×10−3 Ω cm) when the fluorine doping level was 5 at%.  相似文献   
9.
Water electrolysis is an efficient approach for high-purity hydrogen production. However, the anodic sluggish oxygen evolution reaction (OER) always needs high overpotential and thus brings about superfluous electricity cost of water electrolysis. Therefore, exploiting highly efficient OER electrocatalysts with small overpotential especially at high current density will undoubtedly boost the development of industrial water electrolysis. Herein, we used a simple hydrothermal method to prepare a novel FeOOH–CoS nanocomposite on nickel foam (NF). The as-prepared FeOOH–CoS/NF catalyst displays an excellent OER performance with extremely low overpotentials of 306 and 329 mV at 500 and 1000 mA cm−2 in 1.0 M KOH, respectively. In addition, the FeOOH–CoS/NF catalyst can maintain excellent catalytic stability for more than 50 h, and the OER catalytic activity shows almost no attenuation no matter after 1000 repeated CV cycles or 50 h of stability test. The high catalytic activity and stability have exceeded most non-noble metal electrocatalysts reported in literature, which makes the FeOOH–CoS/NF composite catalyst have promising applications in the industrial water electrolysis.  相似文献   
10.
An efficient method for preparation of semiconductor quantum rod films for robust lasing in a cylindrical microcavity is reported. A capillary tube, serving as the laser cavity, is filled with a solution of nanocrystals and irradiated with a series of intense nanosecond laser pulses to produce a nanocrystal film on the capillary surface. The films exhibit intense room‐temperature lasing in whispering‐gallery modes that develop at the film–capillary interface as corroborated from the spacing detected for the lasing modes. Good lasing stability is observed at moderate pump powers. The method was applied successfully to several quantum‐rod samples of various sizes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号