首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28187篇
  免费   3649篇
  国内免费   1863篇
电工技术   1198篇
综合类   1666篇
化学工业   7899篇
金属工艺   3333篇
机械仪表   1167篇
建筑科学   923篇
矿业工程   1892篇
能源动力   860篇
轻工业   1502篇
水利工程   216篇
石油天然气   610篇
武器工业   126篇
无线电   2565篇
一般工业技术   4513篇
冶金工业   3600篇
原子能技术   1298篇
自动化技术   331篇
  2024年   93篇
  2023年   440篇
  2022年   729篇
  2021年   1030篇
  2020年   1111篇
  2019年   1014篇
  2018年   1007篇
  2017年   1132篇
  2016年   1151篇
  2015年   1134篇
  2014年   1562篇
  2013年   1708篇
  2012年   1990篇
  2011年   2036篇
  2010年   1456篇
  2009年   1506篇
  2008年   1262篇
  2007年   1708篇
  2006年   1623篇
  2005年   1410篇
  2004年   1270篇
  2003年   1158篇
  2002年   1021篇
  2001年   888篇
  2000年   769篇
  1999年   592篇
  1998年   471篇
  1997年   378篇
  1996年   352篇
  1995年   261篇
  1994年   282篇
  1993年   179篇
  1992年   206篇
  1991年   158篇
  1990年   113篇
  1989年   96篇
  1988年   83篇
  1987年   65篇
  1986年   72篇
  1985年   37篇
  1984年   41篇
  1983年   19篇
  1982年   21篇
  1981年   23篇
  1980年   8篇
  1978年   6篇
  1977年   3篇
  1974年   6篇
  1959年   4篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
1.
The recent introduction of the Asian yellow-legged hornet, Vespa velutina, into Europe has raised concern regarding the threat to honeybees and the competition with the European hornet, Vespa crabro. The aim of this study was to investigated essential (Mg, Fe, Zn, Cu) and non-essential (Cd and Pb) elements in these two species. Element concentrations were determined in the whole body and separately in the head, thorax and abdomen using atomic absorption spectrometry (AAS). The changes in essential element concentration and speciation during metamorphosis were also studied using size exclusion chromatography followed by AAS and proteomic analysis. In both species, the essential elements were more concentrated in the abdomen due to the presence of fat bodies. Magnesium, Fe and Zn concentrations were significantly higher in V. crabro than in V. velutina and could have been related to the higher aerobic energy demand of the former species required to sustain foraging flight. Low concentrations of Cd and Pb were indicative of low environmental exposure. The concentration and speciation of essential elements, particularly Fe, varied among the developmental stages, indicating a modification of ligand preferences during metamorphosis. Overall, the results in the present study provide a better understanding of the hornet metal metabolism and a foundation for additional studies.  相似文献   
2.
Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.  相似文献   
3.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
4.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
5.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
6.
7.
ABSTRACT

In this study, effect of calcium and gypsum on scheelite and fluorite was investigated using sodium oleate as collector. Micro-flotation and contact angle results showed that the adsorption of calcium could inhibit the hydrophobicity of scheelite and fluorite. Moreover, sulfate could enhance the inhibition. FT-IR results showed that calcium could be priori precipitated into calcium oleate and adsorb on mineral surface. The adsorption of calcium could increase the scheelite potential to IEP, while it showed limited effect on fluorite potential. However, the interaction of calcium on scheelite and fluorite in gypsum solution was more complex than that in calcium solution.  相似文献   
8.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
9.
邹贤 《铜业工程》2020,(3):59-62
添加剂是铜电解精炼生产管理的最关键要素,合适的添加剂使用方案可以有效保障电解生产系统长期稳定。结合添加剂生产实践和其它电解厂添加剂管理优点,提出探索添加剂精细化管理,进一步保障和提升铜电解添加剂管理实效。  相似文献   
10.
不同给液方式对铜电解过程中有重要的影响,不同的循环方式会影响槽内温度分布、电解液成分及阳极泥沉降等,因此,根据铜电解生产不同情况的需要,分析对比了多种给液方式在贵冶电解车间的应用,总结了这几种给液方式的优缺点和适用条件。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号