首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13771篇
  免费   1492篇
  国内免费   1173篇
电工技术   409篇
综合类   936篇
化学工业   3378篇
金属工艺   2345篇
机械仪表   319篇
建筑科学   651篇
矿业工程   241篇
能源动力   1236篇
轻工业   543篇
水利工程   263篇
石油天然气   467篇
武器工业   77篇
无线电   1081篇
一般工业技术   2129篇
冶金工业   586篇
原子能技术   505篇
自动化技术   1270篇
  2024年   67篇
  2023年   305篇
  2022年   402篇
  2021年   482篇
  2020年   446篇
  2019年   416篇
  2018年   433篇
  2017年   536篇
  2016年   478篇
  2015年   465篇
  2014年   663篇
  2013年   1185篇
  2012年   860篇
  2011年   954篇
  2010年   750篇
  2009年   829篇
  2008年   721篇
  2007年   818篇
  2006年   778篇
  2005年   618篇
  2004年   569篇
  2003年   486篇
  2002年   419篇
  2001年   359篇
  2000年   339篇
  1999年   242篇
  1998年   223篇
  1997年   207篇
  1996年   194篇
  1995年   188篇
  1994年   140篇
  1993年   122篇
  1992年   114篇
  1991年   103篇
  1990年   104篇
  1989年   96篇
  1988年   62篇
  1987年   41篇
  1986年   29篇
  1985年   47篇
  1984年   34篇
  1983年   17篇
  1982年   25篇
  1981年   14篇
  1980年   15篇
  1979年   7篇
  1978年   9篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
1.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
2.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
3.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
4.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
5.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
6.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
7.
In this paper we combine video compression and modern image processing methods. We construct novel iterative filter methods for prediction signals based on Partial Differential Equation (PDE) based methods. The mathematical framework of the employed diffusion filter class is given and some desirable properties are stated. In particular, two types of diffusion filters are constructed: a uniform diffusion filter using a fixed filter mask and a signal adaptive diffusion filter that incorporates the structures of the underlying prediction signal. The latter has the advantage of not attenuating existing edges while the uniform filter is less complex. The filters are embedded into a software based on HEVC with additional QTBT (Quadtree plus Binary Tree) and MTT (Multi-Type-Tree) block structure. In this setting, several measures to reduce the coding complexity of the tool are introduced, discussed and tested thoroughly. The coding complexity is reduced by up to 70% while maintaining over 80% of the gain. Overall, the diffusion filter method achieves average bitrate savings of 2.27% for Random Access having an average encoder runtime complexity of 119% and 117% decoder runtime complexity. For individual test sequences, results of 7.36% for Random Access are accomplished.  相似文献   
8.
Proton exchange membrane fuel cells (PEMFCs) have become the most attractive power supply units for stationary and mobile applications. The operation, design characteristics, as well as performance of PEMFCs, are closely related to the multiphase transport of mass, heat, and electricity in the cell, a critical of which is the gas diffusion layer (GDL). It is very important to guarantee the transmission of water and gasses under high current density, and which is the weakness of PEMFCs at present. Microporous layer (MPL) is considered to be the key variable for mass transfer, so varieties of works focus on modification of MPL materials and its structure design. However, there is still a lack of special review to summarize and prospect the progress of MPL in recent years. This review article therefore focuses on the insights and comprehensive understanding of four critical issues of the MPL, the porosity, pore size distribution, wettability, structural design and the durability of MPL. At last, the conclusion and recommendations section summarized the future prospects and recommendations for possible research opportunities.  相似文献   
9.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
10.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号