首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27032篇
  免费   1966篇
  国内免费   994篇
电工技术   725篇
综合类   1494篇
化学工业   9305篇
金属工艺   1650篇
机械仪表   906篇
建筑科学   1200篇
矿业工程   662篇
能源动力   771篇
轻工业   2852篇
水利工程   375篇
石油天然气   1048篇
武器工业   107篇
无线电   1493篇
一般工业技术   3967篇
冶金工业   1941篇
原子能技术   599篇
自动化技术   897篇
  2024年   117篇
  2023年   432篇
  2022年   690篇
  2021年   871篇
  2020年   730篇
  2019年   652篇
  2018年   669篇
  2017年   796篇
  2016年   785篇
  2015年   818篇
  2014年   1207篇
  2013年   1721篇
  2012年   1701篇
  2011年   2042篇
  2010年   1547篇
  2009年   1587篇
  2008年   1337篇
  2007年   1823篇
  2006年   1672篇
  2005年   1407篇
  2004年   1261篇
  2003年   997篇
  2002年   896篇
  2001年   738篇
  2000年   572篇
  1999年   509篇
  1998年   481篇
  1997年   371篇
  1996年   275篇
  1995年   208篇
  1994年   167篇
  1993年   131篇
  1992年   123篇
  1991年   106篇
  1990年   90篇
  1989年   69篇
  1988年   51篇
  1987年   31篇
  1986年   34篇
  1985年   44篇
  1984年   29篇
  1983年   30篇
  1982年   24篇
  1981年   9篇
  1966年   7篇
  1964年   22篇
  1963年   12篇
  1961年   7篇
  1960年   9篇
  1959年   7篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
1.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
2.
The development of electrocatalysts with high activity and durability for oxygen reduction reaction (ORR) in acidic electrolyte environments remains a serious challenge for clean and efficient energy conversion. Synergistic effects between Pt and inexpensive metals, the d band center of Pt and catalyst morphology could adjust the adsorption and desorption of oxygen intermediates by the Pt. All the factors affect the catalytic performance of Pt-based nanocrystals. Here, we prepared Cu@PtCu3 NWs with an average diameter of 74.9 nm for Cu and about 10 nm PtCu3 layer. After etching, the Cu@PtCu3 nanowires is transformed into PtCu nanotube structure, due to the removal of copper from the surface and interior. PtCu NTs for ORR shows excellent activities and durability due to the integration of structural advantages and synergistic effects. Notably, the mass activity and specific activity of PtCu NTs (0.105 A mg?1Pt and 0.230 mA cm?2Pt) are 2.0 and 3.8 times higher than that of commercial Pt/C (0.053 A mg?1Pt and 0.06 mA cm?2Pt). The etching process to change the morphology of the catalyst and alter the electronic structure of the catalyst is expected to be useful for the design of future structured Pt-based alloy nanocatalysts.  相似文献   
3.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
4.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
5.
6.
The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.  相似文献   
7.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
8.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
9.
韩永奇 《上海染料》2020,48(2):8-13
一场新型冠状病毒肺炎疫情的爆发给染料行业的发展带来了影响,既有负面消极,也有积极影响。疫情将促进染料行业绿色发展,推动染料行业走向信息化、智能化时代,走向高质量发展,指出只要坚持绿色、创新和智能化,就能战胜疫情,推动中国染料行业稳健发展。  相似文献   
10.
Front-of-package labels (FOPL) are recommended to reduce consumer intake of ultra-processed food products (UPP). The multiple traffic-light label is one example of FOPL that indicates the content of target nutrients in products by displaying red (high), amber (medium), and/or green (low) color-coding. The red code may implicitly enhance sweetness perception and approach dispositions toward sweet UPP via cross-modal visual-taste interactions. We conducted two experiments to examine the possibility of contradictory influence of explicitly learned and implicit cross-modal associations on the emotional responses evoked by UPP pictures. In both experiments, we first explicitly associated the color codes with health-related meanings. In Experiment I (n = 78), a psychometric tool estimated the emotional responses (pleasantness and arousal ratings) evoked by UPP pictures when preceded by red, amber, or green color-codes. In Experiment II (n = 24), we recorded participants’ electrocortical brain activity to assess the early posterior negativity (EPN) component as an index of the emotional responses to UPP. The reported pleasantness (Experiment I) and the EPN amplitude (Experiment II) were greater for sweet UPP relative to salty UPP when primed with red codes but not when primed with green or amber. A red code increased positive emotions toward sweet UPP despite its explicit association with increased health-risks. Thus, the use of multiple traffic-lights might lead to an unintended implicit approach behavior toward sweet UPP. Designers, researchers, and policy makers may consider color-taste cross-modal associations when designing, testing, and applying FOPL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号