首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   5篇
化学工业   21篇
机械仪表   2篇
一般工业技术   1篇
冶金工业   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2003年   1篇
  2001年   1篇
  1990年   1篇
  1976年   1篇
  1971年   1篇
  1964年   1篇
排序方式: 共有30条查询结果,搜索用时 2 毫秒
1.
The effects of total (T-NSB) and subtotal (S-NSB) destruction of the nigrostriatal bundle were compared with the effects of large lateral hypothalamic (LH) lesions on various aspects of the lateral hypothalamic syndrome. The T-NSB and LH lesions produced equivalent decreases in caudate and telencephalic contents of dopamine and norepinephrine, while with the exception of telencephalic dopamine, S-NSB lesions had consistently smaller effect. The T-NSB and LH lesions produced equivalent effects on duration of aphagia and adipsia (Stages 1 to 3) and on long-term decreases in body weight and ad lib water consumption, and these effects were always greater than those produced by the S-NSB lesion. These aspects of the lateral hypothalamic syndrome appeared to be related to the interruption of the nigrostriatal bundle and consequent decrease in caudate dopamine. The T-NSB and S-NSB lesions produced equivalent long-term deficits in water regulation as measured by drinking in the absence of food or in response to intra- and extracellular dehydration, but these deficits were always significantly less than those produced by the LH lesion. It was concluded that these regulatory deficits were not related to destruction of catecholamine pathways. All three lesions totally blocked eating in response to a glucoprivic challenge. This aspect of the lateral hypothalamic syndrome, therefore, results from destruction of a small portion of the lateral diencephalon and may be related to the interruption of the dopaminergic mesolimbic system.  相似文献   
2.
Formaldehyde-induced and glyoxylic-acid-induced fluorescence histochemistry permits the tissue localization of catecholamines in the central nervous system (CNS) and peripheral nervous system (PNS), and in culture. Counterstains such as ethidium bromide provide excellent background identification of specific innervated regions in both the CNS and the periphery. Use of fluorescence histochemistry with immunocytochemistry can elucidate catecholamine-peptide relationships. Gelatin-ink perfusion used with fluorescence histochemistry permits the investigation of neuro-vascular relationships and documentation of vascular and parenchymal compartmentation of innervation. Combined use of fluorescence histochemistry and retrograde tracing methods demonstrates the specific cellular sources of innervation of target regions. Micropunch neurochemical analysis provides quantitative data for correlation with fluorescence histochemistry within a target region of innervation, and micro-spectrofluorometric analysis provides a semi-quantitative evaluation of the amount of fluorophore within a target region or within specific subcellular compartments such as the cell body or terminals.  相似文献   
3.
Microgravity, one of the conditions faced by astronauts during spaceflights, triggers brain adaptive responses that could have noxious consequences on behaviors. Although monoaminergic systems, which include noradrenaline (NA), dopamine (DA), and serotonin (5-HT), are widespread neuromodulatory systems involved in adaptive behaviors, the influence of microgravity on these systems is poorly documented. Using a model of simulated microgravity (SMG) during a short period in Long Evans male rats, we studied the distribution of monoamines in thirty brain regions belonging to vegetative, mood, motor, and cognitive networks. SMG modified NA and/or DA tissue contents along some brain regions belonging to the vestibular/motor systems (inferior olive, red nucleus, cerebellum, somatosensorily cortex, substantia nigra, and shell of the nucleus accumbens). DA and 5-HT contents were reduced in the prelimbic cortex, the only brain area exhibiting changes for 5-HT content. However, the number of correlations of one index of the 5-HT metabolism (ratio of metabolite and 5-HT) alone or in interaction with the DA metabolism was dramatically increased between brain regions. It is suggested that SMG, by mobilizing vestibular/motor systems, promotes in these systems early, restricted changes of NA and DA functions that are associated with a high reorganization of monoaminergic systems, notably 5-HT.  相似文献   
4.
The malfunction and misregulation of voltage-gated sodium channels (NaVs) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaVs are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV1.1, 1.3, and 1.6–1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.  相似文献   
5.
Potential mGAT4 inhibitors derived from the lead substance (S)-SNAP-5114 have been synthesized and characterized for their inhibitory potency. Variations from the parent compound included the substitution of one of its aromatic 4-methoxy and 4-methoxyphenyl groups, respectively, with a more polar moiety, including a carboxylic acid, alcohol, nitrile, carboxamide, sulfonamide, aldehyde or ketone function, or amino acid partial structures. Furthermore, it was investigated how the substitution of more than one of the aromatic 4-methoxy groups affects the potency and selectivity of the resulting compounds. Among the synthesized test substances (S)-1-{2-[(4-formylphenyl)bis(4-methoxyphenyl)-methoxy]ethyl}piperidine-3-carboxylic acid, that features a carbaldehyde function in place of one of the aromatic 4-methoxy moieties of (S)-SNAP-5114, was found to have a pIC50 value of 5.89±0.07, hence constituting a slightly more potent mGAT4 inhibitor than the parent substance while showing comparable subtype selectivity.  相似文献   
6.
The accumulation of protein aggregates in the brain is a defining feature of a number of neurodegenerative diseases. Though diseases vary in the composition of aggregated proteins (amyloid-β and tau are primarily implicated in Alzheimer's disease, α-synuclein is the primary protein aggregate in Parkinson's disease, etc.), similarities in the formation of soluble intermediate aggregates, some of which go on to deposit in stable fibrillar structures, suggests that the protein sequence may be far less important than the aggregate conformation to toxicity and onset of disease. Growing evidence suggests that intermediate or independently formed oligomeric aggregates are more highly toxic than fibrils, and are more efficient seeds for the aggregation of endogenous protein. Furthermore, the overlap of different aggregated proteins in disease, as well as the ability of amyloid oligomers to cross-seed the aggregation of each other, suggests that synergistic interactions between varying aggregant proteins is a critical component in neurodegeneration. The progression of aggregates along defined pathways throughout the brain is crucial to the spread of disease and likely depends upon the transport of aggregates from affected to unaffected brain regions. Thus, the presence of oligomeric seeds that more efficiently seed the aggregation of homologous and diverse proteins may underlie neurodegeneration.  相似文献   
7.
Oligomers of the amyloid‐β peptide (Aβ) play a central role in the pathogenesis of Alzheimer’s disease and have been suggested to induce neurotoxicity by binding to a plethora of cell‐surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aβ42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single‐molecule imaging to characterize Aβ42 oligomers (oAβ42) and to confirm the controversial interaction of oAβ42 with the cellular prion protein (PrPC) on live neuronal cells. Our results show that, at nanomolar concentrations, oAβ42 interacts with PrPC and that the species bound to PrPC are predominantly small oligomers (dimers and trimers). Single‐molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor‐mediated oAβ‐induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways.  相似文献   
8.
The kainate receptors are the least studied subfamily of ionotropic glutamate receptors. These receptors are thought to have a neuromodulatory role and have been associated with a variety of disorders in the central nervous system. This makes kainate receptors interesting potential drug targets. Today, structures of the ligand binding domain (LBD) of the kainate receptor GluK3 are only known in complex with the endogenous agonist glutamate, the natural product kainate, and two synthetic agonists. Herein we report structures of GluK3 LBD in complex with two 2,4‐syn‐functionalized (S)‐glutamate analogues to investigate their structural potential as chemical scaffolds. Similar binding affinities at GluK3 were determined for the 2‐(methylcarbamoyl)ethyl analogue (Ki=4.0 μM ) and the 2‐(methoxycarbonyl)ethyl analogue (Ki=1.7 μM ), in agreement with the similar positioning of the compounds within the binding pocket. As the binding affinity is similar to that of glutamate, this type of Cγ substituent could be used as a scaffold for introduction of even larger substituents reaching into unexplored binding site regions to achieve subtype selectivity.  相似文献   
9.
Axon collateral branches, as a key structural motif of neurons, allow neurons to integrate information from highly interconnected, divergent networks by establishing terminal boutons. Although physical cues are generally known to have a comprehensive range of effects on neuronal development, their involvement in axonal branching remains elusive. Herein, it is demonstrated that the nanopillar arrays significantly increase the number of axon collateral branches and also promote their growth. Immunostaining and biochemical analyses indicate that the physical interactions between the nanopillars and the neurons give rise to lateral filopodia at the axon shaft via cytoskeletal changes, leading to the formation of axonal branches. This report, demonstrates that nanotopography regulates axonal branching, and provides a guideline for the design of sophisticated neuron‐based devices and scaffolds for neuro‐engineering.  相似文献   
10.
Light control of voltage-gated ion channels: We have developed red-shifted derivatives of QAQ, a powerful doubly charged photochromic blocker. These derivatives allow for remote control of K(v) and Na(v) channel conductance with light and offer the opportunity to silence neuronal activity reversibly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号