首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56285篇
  免费   4985篇
  国内免费   4967篇
电工技术   1238篇
综合类   2990篇
化学工业   6794篇
金属工艺   25735篇
机械仪表   2804篇
建筑科学   1343篇
矿业工程   1255篇
能源动力   1303篇
轻工业   1897篇
水利工程   420篇
石油天然气   1178篇
武器工业   706篇
无线电   1489篇
一般工业技术   9907篇
冶金工业   5966篇
原子能技术   528篇
自动化技术   684篇
  2024年   238篇
  2023年   885篇
  2022年   1628篇
  2021年   1924篇
  2020年   2033篇
  2019年   1571篇
  2018年   1551篇
  2017年   1992篇
  2016年   1850篇
  2015年   1976篇
  2014年   2790篇
  2013年   3030篇
  2012年   3506篇
  2011年   4307篇
  2010年   3148篇
  2009年   3522篇
  2008年   2788篇
  2007年   3865篇
  2006年   3783篇
  2005年   3055篇
  2004年   2620篇
  2003年   2256篇
  2002年   1836篇
  2001年   1648篇
  2000年   1368篇
  1999年   1218篇
  1998年   902篇
  1997年   862篇
  1996年   825篇
  1995年   635篇
  1994年   575篇
  1993年   400篇
  1992年   377篇
  1991年   291篇
  1990年   259篇
  1989年   212篇
  1988年   135篇
  1987年   69篇
  1986年   51篇
  1985年   47篇
  1984年   52篇
  1983年   29篇
  1982年   43篇
  1981年   28篇
  1980年   13篇
  1978年   13篇
  1976年   6篇
  1975年   6篇
  1959年   5篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
2.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
3.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
4.
Hydraulic fracturing with slickwater is a field-proven stimulation technology used in tight reservoirs. Because of the high pumping rate associated with slickwater fracturing, drag reduction (DR) is critical in minimizing pressure drop and the success of oilfield operations. In this paper, a new type of drag reducer (SPR) was synthesized with acrylamide and 12-allyloxydodecyl acid sodium, and its drag reduction performance was evaluated. The results showed that the new drag reducer features low molecular weight, fast-dissolving rate and low interfacial tension. The algorithm of estimating the drag reduction rate of non-Newtonian fluid SPR was proposed and validated. Empirical or semianalytical models for estimating the friction ratio (σ) or friction factor (λ or f) were used to simulate the turbulence behavior of the SPR drag reducer under different Reynolds numbers (Re). The modified Virk's correlation could accurately model the turbulent behavior of the SPR drag reducer. A unified calculation formula was established in this study for different pipe diameters.  相似文献   
5.
Ni–Co/Mg(Al)O alloy catalysts with different Co/Ni molar ratios have been prepared from Ni- and Co-substituted Mg–Al hydrotalcite-like compounds (HTlcs) as precursors and tested for dry reforming of methane. The XRD characterization shows that Ni–Co–Mg–Al HTlcs are decomposed by calcination into Mg(Ni,Co,Al)O solid solution, and by reduction finely dispersed alloy particles are formed. H2-TPR indicates a strong interaction between nickel/cobalt oxides and magnesia, and the presence of cobalt in Mg(Ni,Co,Al)O enhances the metal-support interaction. STEM-EDX analysis reveals that nickel and cobalt cations are homogeneously distributed in the HTlcs precursor and in the derived solid solution, and by reduction the resulting Ni–Co alloy particles are composition-uniform. The Ni–Co/Mg(Al)O alloy catalysts exhibit relatively high activity and stability at severe conditions, i.e., a medium temperature of 600 °C and a high space velocity of 120000 mL g?1 h?1. In comparison to monometallic Ni catalyst, Ni–Co alloying effectively inhibits methane decomposition and coke deposition, leading to a marked enhancement of catalytic stability. From CO2-TPD and TPSR, it is suggested that alloying Ni with Co favors the CO2 adsorption/activation and promotes the elimination of carbon species, thus improving the coke resistance. Furthermore, a high and stable activity with low coking is demonstrated at 750 °C. The hydrotalcite-derived Ni–Co/Mg(Al)O catalysts show better catalytic performance than many of the reported Ni–Co catalysts, which can be attributed to the formation of Ni–Co alloy with uniform composition, proper size, and strong metal-support interaction as well as the presence of basic Mg(Al)O as support.  相似文献   
6.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
7.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
8.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
9.
对Inconel 690传热管材进行钨极气体保护焊(GTAW)对接焊,采用拉伸试验机、压扁试验机和光学显微镜测试和分析传热管焊接接头,同时利用ANSYS软件开展焊接接头在设计工况失压时的一次应力强度校核。研究结果表明:焊缝中心为树枝胞状晶,熔合线附近为粗大柱状晶。室温时接头的平均抗拉强度为619 MPa,平均屈服强度为292 MPa,350℃时接头平均抗拉强度为475 MPa,平均屈服强度为206 MPa,拉伸接头断裂从熔合区开始贯穿整个焊缝组织,呈塑性断裂。压扁试验和反向压扁试验结果表明管接头完好。通过ANSYS分析可知,设计工况下传热管接头350℃许用应力强度150 MPa限值可满足其一次应力强度要求,且裕量较大。  相似文献   
10.
Background: Within the claudin (CLDN) family, CLDN12 mRNA expression is altered in various types of cancer, but its clinicopathological relevance has yet to be established due to the absence of specific antibodies (Abs) with broad applications. Methods: We generated a monoclonal Ab (mAb) against human/mouse CLDN12 and verified its specificity. By performing immunohistochemical staining and semiquantification, we evaluated the relationship between CLDN12 expression and clinicopathological parameters in tissues from 138 cases of cervical cancer. Results: Western blot and immunohistochemical analyses revealed that the established mAb selectively recognized the CLDN12 protein. Twenty six of the 138 cases (18.8%) showed low CLDN12 expression, and the disease-specific survival (DSS) and recurrence-free survival rates were significantly decreased compared with those in the high CLDN12 expression group. We also demonstrated, via univariable and multivariable analyses, that the low CLDN12 expression represents a significant prognostic factor for the DSS of cervical cancer patients (HR 3.412, p = 0.002 and HR 2.615, p = 0.029, respectively). Conclusions: It can be concluded that a reduced CLDN12 expression predicts a poor outcome for cervical cancer. The novel anti-CLDN12 mAb could be a valuable tool to evaluate the biological relevance of the CLDN12 expression in diverse cancer types and other diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号