首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3593篇
  免费   421篇
  国内免费   142篇
电工技术   36篇
综合类   159篇
化学工业   1281篇
金属工艺   77篇
机械仪表   229篇
建筑科学   57篇
矿业工程   3篇
能源动力   39篇
轻工业   804篇
水利工程   4篇
石油天然气   6篇
武器工业   4篇
无线电   429篇
一般工业技术   775篇
冶金工业   25篇
原子能技术   44篇
自动化技术   184篇
  2024年   30篇
  2023年   109篇
  2022年   342篇
  2021年   391篇
  2020年   206篇
  2019年   194篇
  2018年   149篇
  2017年   158篇
  2016年   160篇
  2015年   183篇
  2014年   183篇
  2013年   299篇
  2012年   220篇
  2011年   183篇
  2010年   139篇
  2009年   142篇
  2008年   107篇
  2007年   140篇
  2006年   121篇
  2005年   112篇
  2004年   109篇
  2003年   72篇
  2002年   65篇
  2001年   50篇
  2000年   47篇
  1999年   23篇
  1998年   24篇
  1997年   26篇
  1996年   20篇
  1995年   21篇
  1994年   17篇
  1993年   23篇
  1992年   13篇
  1991年   11篇
  1990年   6篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1957年   1篇
排序方式: 共有4156条查询结果,搜索用时 15 毫秒
1.
The dimensional changes of liver sections during the course of processing with glycol methacrylate (GMA) or with ethanol are described. Tissue processing with ethanol served as a control. During prolonged processing steps (24 h each), linear shrinkage of tissue specimens dehydrated with GMA at room temperature was 13.2%. Subsequent infiltration with GMA resulted in trivial swelling, and polymerization in slight shrinkage (2.3%). In comparison, processing with cold GMA resulted in shrinkage during dehydration (about 10.8%), a slight swelling in pure GMA, followed by shrinkage during polymerization (2.2%). Short routine processing schedules resulted in similar shrinkage/swelling patterns, although precise values differed slightly. In all experiments, ethanolic dehydration resulted in smaller dimensional tissue changes than did GMA dehydration. The dimensional changes of tissue sections during stretching on water, mounting and drying compensated for the major part of the shrinkage manifested during processing.  相似文献   
2.
In enology, alcoholic fermentation is a complex process involving several mechanisms. Slow and incomplete alcoholic fermentation is a chronic problem for the wine industry and factors leading to sluggish and stuck fermentations have been extensively studied and reviewed. The most studied cause of sluggish and stuck fermentation is the nitrogen content limitation. Nevertheless, other factors, such as temperature of fermentation and sugar concentration can affect the growth of yeasts. In this study we modelled the yeast growth‐cycle in wine model system as a function of temperature, sugar and ammonium concentrations; the individual effects and the interaction of these factors were analysed by means of a quadratic response surface methodology. Cell concentrations and weight loss were monitored in the whole wine fermentation process. The results of central composite design show that lower is the availability of nitrogen, higher is the cell growth rate; moreover, initial nitrogen concentration also influences survival time of Saccharomyces cerevisiae.  相似文献   
3.
The aims of this work were to investigate the conversion of a marine alga into hydroxyapatite (HA), and furthermore to design a composite bone tissue engineering scaffold comprising the synthesised HA within a porous bioresorbable polymer. The marine alga, Phymatolithon calcareum, which exhibits a calcium carbonate honeycomb structure, with a natural architecture of interconnecting permeable pores (microporosity 4–11 μm), provided the initial raw material for this study. The objective was to convert the alga into hydroxyapatite while maintaining its porous morphology using a sequential pyrolysis and chemical synthesis processes. Semi-quantitative XRD analysis of the post-hydrothermal material (pyrolised at 700–750 °C), indicated that the calcium phosphate (CaP) ceramic most likely consisted of a calcium carbonate macroporous lattice, with hydroxyapatite crystals on the surface of the macropores. Cell visibility (cytotoxicity) investigations of osteogenic cells were conducted on the CaP ceramic (i.e., the material post-hydrothermal analysis) which was found to be non-cytotoxic and displayed good biocompatibility when seeded with MG63 cells. Furthermore, a hot press scaffold fabrication technique was developed to produce a composite scaffold of CaP (derived from the marine alga) in a polycaprolactone (PCL) matrix. A salt leaching technique was further explored to introduce macroporosity to the structure (50–200 μm). Analysis indicated that the scaffold contained both micro/macroporosity and mechanical strength, considered necessary for bone tissue engineering applications.  相似文献   
4.
Chronic lymph drainage techniques in sheep have been used to map the pathways and to quantify the fluid and cell traffic through periodontal tissues. The continuous collection of cervical and prescapular lymph has demonstrated that 65% of labelled protein tracer injected into the periodontal tissues could be found in lymph over a period of 7.5 hours. Nearly 90% of the total radioactivity could be accounted for between the lymph and the tissue site. When silk was impregnated with radiolabelled albumin and a tooth ligated, the kinetics of the subsequent appearance of the tracer in lymph emphasized the ease with which macromolecules surrounding the teeth gain access to the lymphatics, regional lymph nodes, and immune apparatus. Animals were primed with BCG and then tuberculin (delayed hypersensitivity) lesions were simultaneously induced in the skin, bowel, and periodontium. When T cells were labelled with radioisotopes and their migration from blood to lymph measured, the periodontal tissue traffic pattern was distinct from the traffic pattern through DTH in the skin and also distinct from the pattern through the small intestine. This indicates that the lymphocyte traffic through the inflamed periodontium has unique features. This tissue specificity was not apparent when lesions were induced with TNFalpha. The static assessment of lymphocyte subsets within the tissues was also assessed with immunohistochemistry.  相似文献   
5.
Grain legumes are important crops, but they are salt sensitive. This research dissected the responses of four (sub)tropical grain legumes to ionic components (Na+ and/or Cl) of salt stress. Soybean, mungbean, cowpea, and common bean were subjected to NaCl, Na+ salts (without Cl), Cl salts (without Na+), and a “high cation” negative control for 57 days. Growth, leaf gas exchange, and tissue ion concentrations were assessed at different growing stages. For soybean, NaCl and Na+ salts impaired seed dry mass (30% of control), more so than Cl salts (60% of control). All treatments impaired mungbean growth, with NaCl and Cl salt treatments affecting seed dry mass the most (2% of control). For cowpea, NaCl had the greatest adverse impact on seed dry mass (20% of control), while Na+ salts and Cl salts had similar intermediate effects (~45% of control). For common bean, NaCl had the greatest adverse effect on seed dry mass (4% of control), while Na+ salts and Cl salts impaired seed dry mass to a lesser extent (~45% of control). NaCl and Na+ salts (without Cl) affected the photosynthesis (Pn) of soybean more than Cl salts (without Na+) (50% of control), while the reverse was true for mungbean. Na+ salts (without Cl), Cl salts (without Na+), and NaCl had similar adverse effects on Pn of cowpea and common bean (~70% of control). In conclusion, salt sensitivity is predominantly determined by Na+ toxicity in soybean, Cl toxicity in mungbean, and both Na+ and Cl toxicity in cowpea and common bean.  相似文献   
6.
Cardiovascular disease is the leading cause of mortality and morbidity around the globe, creating a substantial socio-economic burden as a result. Myocardial infarction is a significant contributor to the detrimental impact of cardiovascular disease. The death of cardiomyocytes following myocardial infarction causes an immune response which leads to further destruction of tissue, and subsequently, results in the formation of non-contractile scar tissue. Macrophages have been recognized as important regulators and participants of inflammation and fibrosis following myocardial infarction. Macrophages are generally classified into two distinct groups, namely, classically activated, or M1 macrophages, and alternatively activated, or M2 macrophages. The phenotypic profile of cardiac macrophages, however, is much more diverse and should not be reduced to these two subsets. In this review, we describe the phenotypes and functions of macrophages which are present in the healthy, as well as the infarcted heart, and analyze them with respect to M1 and M2 polarization states. Furthermore, we discuss therapeutic strategies which utilize macrophage polarization towards an anti-inflammatory or reparative phenotype for the treatment of myocardial infarction.  相似文献   
7.
Lipofilling (LF) is a largely employed technique in reconstructive and esthetic breast surgery. Over the years, it has demonstrated to be extremely useful for treatment of soft tissue defects after demolitive or conservative breast cancer surgery and different procedures have been developed to improve the survival of transplanted fat graft. The regenerative potential of LF is attributed to the multipotent stem cells found in large quantity in adipose tissue. However, a growing body of pre-clinical evidence shows that adipocytes and adipose-derived stromal cells may have pro-tumorigenic potential. Despite no clear indication from clinical studies has demonstrated an increased risk of cancer recurrence upon LF, these observations challenge the oncologic safety of the procedure. This review aims to provide an updated overview of both the clinical and the pre-clinical indications to the suitability and safety of LF in breast oncological surgery. Cellular and molecular players in the crosstalk between adipose tissue and cancer are described, and heterogeneous contradictory results are discussed, highlighting that important issues still remain to be solved to get a clear understanding of LF safety in breast cancer patients.  相似文献   
8.
TRPA1, a nonselective cation channel, is expressed in sensory afferent that innervates peripheral targets. Neuronal TRPA1 can promote tissue repair, remove harmful stimuli and induce protective responses via the release of neuropeptides after the activation of the channel by chemical, exogenous, or endogenous irritants in the injured tissue. However, chronic inflammation after repeated noxious stimuli may result in the development of several diseases. In addition to sensory neurons, TRPA1, activated by inflammatory agents from some non-neuronal cells in the injured area or disease, might promote or protect disease progression. Therefore, TRPA1 works as a molecular sentinel of tissue damage or as an inflammation gatekeeper. Most kidney damage cases are associated with inflammation. In this review, we summarised the role of TRPA1 in neurogenic or non-neurogenic inflammation and in kidney disease, especially the non-neuronal TRPA1. In in vivo animal studies, TRPA1 prevented sepsis-induced or Ang-II-induced and ischemia-reperfusion renal injury by maintaining mitochondrial haemostasis or via the downregulation of macrophage-mediated inflammation, respectively. Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate hypoxia–reoxygenation injury in vitro and ischaemia–reperfusion-induced kidney injury in vivo through MAPKs/NF-kB signalling. Acute kidney injury (AKI) patients with high renal tubular TRPA1 expression had low complete renal function recovery. In renal disease, TPRA1 plays different roles in different cell types accordingly. These findings depict the important role of TRPA1 and warrant further investigation.  相似文献   
9.
Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.  相似文献   
10.
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient’s hormonal status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号