首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5306篇
  免费   369篇
  国内免费   185篇
电工技术   116篇
综合类   236篇
化学工业   1258篇
金属工艺   110篇
机械仪表   238篇
建筑科学   720篇
矿业工程   65篇
能源动力   111篇
轻工业   243篇
水利工程   92篇
石油天然气   50篇
武器工业   12篇
无线电   460篇
一般工业技术   618篇
冶金工业   179篇
原子能技术   112篇
自动化技术   1240篇
  2024年   7篇
  2023年   49篇
  2022年   115篇
  2021年   200篇
  2020年   147篇
  2019年   132篇
  2018年   128篇
  2017年   115篇
  2016年   182篇
  2015年   164篇
  2014年   331篇
  2013年   391篇
  2012年   415篇
  2011年   434篇
  2010年   286篇
  2009年   361篇
  2008年   347篇
  2007年   306篇
  2006年   288篇
  2005年   253篇
  2004年   197篇
  2003年   175篇
  2002年   139篇
  2001年   98篇
  2000年   76篇
  1999年   89篇
  1998年   64篇
  1997年   38篇
  1996年   47篇
  1995年   32篇
  1994年   30篇
  1993年   23篇
  1992年   21篇
  1991年   19篇
  1990年   20篇
  1989年   17篇
  1988年   9篇
  1987年   4篇
  1986年   5篇
  1985年   13篇
  1984年   13篇
  1983年   11篇
  1982年   6篇
  1980年   4篇
  1975年   6篇
  1966年   4篇
  1964年   6篇
  1961年   4篇
  1956年   3篇
  1955年   5篇
排序方式: 共有5860条查询结果,搜索用时 15 毫秒
1.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
2.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
3.
A hybrid sorbent material for removal of hydrogen sulfide from air was developed. The material is based on activated carbon and iron compounds obtained from waste iron(II) sulfate(VI) heptahydrate. The iron salt is deposited on the carbonaceous support and subjected to oxidation (Fe2+ to Fe3+) using atmospheric oxygen under alkaline conditions. An effect of H2O2 addition to the process on the composition of the resultant material was also examined. X-ray diffraction (XRD) analyses confirmed easy conversion of waste FeSO4·7H2O to iron oxides Fe3O4 and FeOOH. The activated carbon supporting iron oxides revealed a higher efficiency in H2S elimination from air compared to the commercial activated carbon, without any modification.  相似文献   
4.
医院建筑项目是非常复杂且具有挑战性的建设项目。传统的交付模式无法满足人们对医院建筑建设、运营方面的高要求,为此开展面向医院建筑项目的IPD模式应用研究。在对IPD模式发展现状整理的基础上,阐述医院建筑项目IPD模式的适用性。分析采用IPD模式的医院建筑项目特点,并以上海市某公立三甲专科医院项目为例,对IPD模式在国内的应用进行探索性研究。  相似文献   
5.
The hot corrosion Type II of the alloys FeCr20, FeCr20Ni10, FeCr20Ni20, and FeCr20Co10 is investigated at 700°C in air + 0.5% SO2 with deposits consisting of Na2SO4 and a eutectic mixture of Na2SO4 and MgSO4 for 24, 100, and 300 h. The alloying elements nickel and cobalt have a positive influence when tests are conducted using a MgSO4‐Na2SO4 deposit. In this case, they reduce the metal loss and increase the time to the propagation stage. In contrast, when the alloys are exposed with a Na2SO4 deposit, these alloying elements increase the metal loss and allow for the transition to the propagation stage because they can form molten phases with the Na2SO4. During the incubation stage an oxide scale forms on the FeCr20 alloy, which is thicker than the one formed during exposure without a deposit, and iron oxides are observed, which precipitate in the deposit. The propagation stage occurs by a dissolution and precipitation mechanism forming localized pitting attack. Iron is the main species that dissolves and precipitates, while chromium remains mainly as an oxide beneath the initial surface. The additional elements are found in the pit and in the salt deposit.  相似文献   
6.
Three N-heteroleptic Pt(II) complexes, [Pt(C^C)(O^O)] [O^O = acetylacetonate, C^C = 1-phenyl-1,2,4-triazol-5-ylidene (1), C^C = 4-phenyl-1,2,4-triazol-5-ylidene (2), C^C = 2-phenylpyrazine (3)] have been investigated with density functional theory (DFT) and time-dependent density functional theory (TDDFT). The radiative decay rate constants of complexes 1–3 have been discussed with the oscillator strength (fn), the strength of spin–orbit coupling (SOC) interaction between the lowest energy triplet excited state (T1) and singlet excited states (Sn), and the energy gaps between E(T1) and E(Sn). To illustrate the nonradiative decay processes, the transition states between triplet metal-centered (3MC) and T1 states have been optimized and were verified with the calculations of vibrational frequencies and intrinsic reaction coordinate (IRC). In addition, the minimum energy crossing points (MECPs) between 3MC and ground states (S0) were optimized. At last, the potential energy curves relevant to the nonradiative decay pathways are simulated. The results show that complex 3 has the biggest photoluminescence quantum yield because the complex 3 has the biggest radiative decay rate constant and the smallest nonradiative decay rate constant in complexes 1–3.  相似文献   
7.
8.
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme’s independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.  相似文献   
9.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
10.
Water electrolysis powered by renewable electricity will likely be critical to a future hydrogen economy. However, the typical use of strongly acidic or alkaline electrolytes necessitates the use of expensive materials, while bubbles add to capital and operational costs, due to blocking of the electrode surface and the necessary use of pumps and gas-liquid separators. Here ‘bubble-free’ oxygen evolution at mild pH is carried out using an electrocatalyst that mimics photosystem II (PSII). The bubble-free electrode includes a gas-extracting Gore-Tex® membrane. Edge-functionalised graphene (EFG) is included to mimic the metal-binding local protein environment, and the tyrosine residue, in the oxygen evolving complex (OEC) of PSII, while MnOx and Ca2+ are incorporated to mimic the Mn4CaO5 cluster. Interaction between EFG, MnOx, and Ca2+ results in a significant, 130 mV fall in the overpotential required to drive electrocatalytic oxygen evolution at 10 mA cm−2, compared to the electrode without these biomimetic components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号