首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
原子能技术   2篇
自动化技术   1篇
  2019年   1篇
  2014年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In recent years, the Industry 4.0 concept brings new demands and trends in different areas; one of them is distributing computational power to the cloud. This concept also introduced the Reference Architectural Model for Industry 4.0 (RAMI 4.0). The efficiency of data communications within the RAMI 4.0 model is a critical issue. Aiming to evaluate the efficiency of data communication in the Cloud Based Cyber-Physical Systems (CB-CPS), this study analyzes the periods and data amount required to communicate with individual hierarchy levels of the RAMI 4.0 model. The evaluation of the network properties of the communication protocols eligible for CB-CPS is presented. The network properties to different cloud providers and data centers’ locations have been measured and interpreted. To test the findings, an architecture for cloud control of laboratory model was proposed. It was found that the time of the day; the day of the week; and data center utilization have a negligible impact on latency. The most significant impact lies in the data center distance and the speed of the communication channel. Moreover, the communication protocol also has impact on the latency. The feasibility of controlling each level of RAMI 4.0 through cloud services was investigated. Experimental results showed that control is possible in many solutions, but these solutions mostly cannot depend just on cloud services. The intelligence on the edge of the network will play a significant role. The main contribution is a thorough evaluation of different cloud providers, locations, and communication protocols to provide recommendations sufficient for different levels of the RAMI 4.0 architecture.  相似文献   
2.
ITER is the first worldwide international project aiming to design a facility to produce nuclear fusion energy. The technical requirements of its plant systems have been established in the ITER Project Baseline. In the project, the Reliability, Availability, Maintainability and Inspectability (RAMI) approach has been adopted for technical risk control to help aid the design of the components in preparation for operation and maintenance. A RAMI analysis was performed on the conceptual design of the ITER Central Safety System (CSS). A functional breakdown was prepared in a bottom-up approach, resulting in the system being divided into 2 main functions and 20 sub-functions. These functions were described using the IDEF0 method. Reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. Initial and expected scenarios were analyzed to define risk-mitigation actions. The inherent availability of the ITER CSS expected after implementation of mitigation actions was calculated to be 99.80% over 2 years, which is the typical interval of the scheduled maintenance cycles. This is consistent with the project required value of 99.9 ± 0.1%. A Failure Modes, Effects and Criticality Analysis was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability of the plasma operation. This analysis defined when risk mitigation actions were required in terms of design, testing, operation procedures and/or maintenance to reduce the risk levels and increase the availability of the main functions.  相似文献   
3.
ITER is the first worldwide international project aiming to design a device that proves the physics and technological basis for fusion power plants to produce nuclear fusion energy. In the project, the RAMI approach (reliability, availability, maintainability and inspectability) has been adopted for technical risk control to guide the design of components in preparation for operation and maintenance. RAMI analysis of the ITER central interlock system (CIS), which shall provide investment protection for the ITER systems was performed on the conceptual design. A functional breakdown was prepared in a bottom-up approach, resulting in the system being divided into 5 main functions and 7 sub-functions which are described using the IDEFØ method. Reliability block diagrams (RBDs) were prepared to estimate the reliability and availability of each function under stipulated operating conditions. Initial and expected scenarios were analyzed to define risk-mitigation actions. The inherent availability of the ITER CIS expected after implementation of mitigating actions was calculated to be 99.86% over 2 years, which is the typical interval of the scheduled maintenance cycles. A failure modes, effects and criticality analysis (FMECA) was performed to initiate risk mitigation action. Criticality matrices highlight the risks of the different failure modes with regard to the probability of their occurrence and impact on operations. It was assessed that the availability of the ITER CIS, with appropriate mitigating actions applied, meets the project availability requirement for the system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号